In silico analysis of the phosphorylation effect on the structure of the human sterol-hydroxylases CYP17A1 AND CYP19A1
https://doi.org/10.29235/1561-8323-2020-64-4-431-440
Abstract
The trajectories of molecular dynamics simulation of phosphorylated S258 (CYP17A1), T162 and Y361 (CYP19A1) were analyzed to understand a possible mechanism of influence of post-translational modification (PTM) on the structure and functions of human sterol-hydroxylases CYP17A1 and CYP19A1. It was found that PTM has no dramatic influence on the structures of the enzymes but stabilizes them. According to our data, the phosphorylation of S258, T162 and Y361 influences the interface of interaction between human sterol-hydroxylases and the corresponding electron donors by decreasing the mobility of amino acids that take part in forming molecular complexes of the enzymes and the corresponding redox-partners. The phosphorylation of T162 (CYP19A1) decreases the mobility of amino acids forming access channel. The obtained results can shed light on the mechanism of fast regulation of human CYP17A1 and CYP19A1 activity by PTM.
About the Authors
Ya. U. DzichenkaBelarus
Dzichenka Yaraslau U. - Ph. D. (Chemistry), Senior researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Kuprevich Str., 220141, Minsk.
M. Trawkina
Belarus
Trawkina Maria - Junior researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Kuprevich Str., 220141, Minsk.
A. V. Yantsevich
Belarus
Yantsevich Aliaksei V. - Ph. D. (Chemistry), Head of the Laboratory, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Kuprevich Str., 220141, Minsk.
S. A. Usanov
Belarus
Usanov Sergei A. - Corresponding Member, D. Sc. (Chemistry), Professor, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Kuprevich Str., 220141, Minsk.
References
1. Hall P. F. Cytochrome P-450 C21scc: one enzyme with two actions: hydroxylase and lyase. Journal of Steroid Biochemistry and Molecular Biology, 1991, vol. 40, no. 4-6, pp. 527-532. https://doi.org/10.1016/0960-0760(91)90272-7
2. Simpson E. R., Mahendroo M. S., Means G. D., Kilgore M. W., Hinshelwood M. M., Graham-Lorence S., Amarneh B., Ito Y., Fisher C. R., Michael M. D., Mendelson C. R., Bulun S. E. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Reveiws, 1994, vol. 15, no. 3, pp. 342-355. https://doi.org/10.1210/edrv-15-3-342
3. Sushko T. A., Gilep A. A., Usanov S. A. Genetics, Structure, Function, Mode of Actions and Role in Cancer Development of CYP17. Anti-Cancer Agents in Medicinal Chemistry, 2014, vol. 14, no. 1, pp. 66-76. https://doi.org/10.2174/187152061131300330
4. Meinhardt U., Mullis P. E. The aromatase cytochrome P-450 and its clinical impact. Hormone Research in Paediatrics, 2002, vol. 57, no. 5-6, pp. 145-152. https://doi.org/10.1159/000058374
5. Sandhu S. S., Shukla H., Aharwal R. P., Kumar S., Shukla S. Antifungal Azole Derivatives and their Pharmacological Potential: Prospects & Retrospects. Natural Products Journal, 2014, vol. 4, no. 2, pp. 140-152. https://doi.org/10.2174/221031550402141009100632
6. Malikova J., Brixius-Anderko S., Udhane S. S., Parween S., Dick B., Bernhardt R., Pandey A. V. CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. Journal of Steroid Biochemistry and Molecular Biology, 2017, vol. 174, pp. 192-200. https://doi.org/10.1016/j.jsbmb.2017.09.007
7. Molehin D., Castro-Piedras I., Sharma M., Sennoune S. R., Arena D., Manna P. R., Pruitt K. Aromatase acetylation Patterns and Altered Activity in Response to Sirtuin Inhibition. Molecular Cancer Research, 2018, vol. 16, no. 10, pp. 15301542. https://doi.org/10.1158/1541-7786.mcr-18-0047
8. Charvet C. D., Laird J., Xu Yu., Salomon R. G., Pikuleva I. A. Posttranslational modification by an isolevuglandin diminishes activity of the mitochondrial cytochrome P450 27A1. Journal of Lipid Research, 2013, vol. 54, no. 5, pp. 1421-1429. https://doi.org/10.1194/jlr.m035790
9. Swierczynska M. M., Betz M. J., Colombi M., Dazert E., Jeno P., Moes S., Pfaff C., Glatz K., Reincke M., Beuschlein F., Donath M. Y., Hall M. N. Proteomic Landscape of Aldosterone-Producing Adenoma. Hypertension, 2019, vol. 73, no. 2, pp. 469-480. https://doi.org/10.1161/hypertensionaha.118.11733
10. Hayashi T., Harada N. Post-translational dual regulation of cytochrome P450 aromatase at the catalytic and protein levels by phosphorylation/dephosphorylation. FEBS Journal, 2014, vol. 281, no. 21, pp. 4830-4840. https://doi.org/10.1111/febs.13021
11. Tee M. K., Miller W. L. Phosphorylation of Human Cytochrome P450c17 by p38a Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis. Journal of Biological Chemistry, 2013, vol. 288, no. 33, pp. 23903-23913. https://doi.org/10.1074/jbc.m113.460048
12. Catalano S., Barone I., Giordano C., Rizza P., Qi H., Gu G., Malivindi R., Bonofiglio D., Ando S. Rapid estradiol/ERa signaling enhances aromatase enzymatic activity in breast cancer cells. Molecular Endocrinology, 2009, vol. 23, no. 10, pp. 1634-1645. https://doi.org/10.1210/me.2009-0039
13. Wang Y.-H., Tee M. K., Miller W. L. Human cytochrome P450c17: single step purification and phosphorylation of serine 258 by protein kinase A. Endocrinology, 2010, vol. 151, no. 4, pp. 1677-1684. https://doi.org/10.1210/en.2009-1247
14. Ritacco I., Spinello A., Ippoliti E., Magistrato A. Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme. Journal of Chemical Informational and Modeling, 2019, vol. 59, no. 6, pp. 2930-2940. https://doi.org/10.1021/acs.jcim.9b00157
15. Pechurskaya T. A., Harnastai I. N., Grabovec I. P., Gilep A. A., Usanov S. A. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochemical and Biophysical Research Communications, 2007, vol. 353, no. 3, pp. 598-604. https://doi.org/10.1016/j.bbrc.2006.12.047