Influence of the extracorporeal detoxication methods on the levels of nonessential amino acids in the blood plasma of patients with sepsis (Communicated by Corresponding Member Nikolay S. Serduchenko)
https://doi.org/10.29235/1561-8323-2020-64-4-457-465
Abstract
Some disadvantages of the extracorporeal blood purification (EBP) methods as reducing plasma levels of different important metabolites are described. Disorders of amino acid metabolism in sepsis are manifested into microcirculation interruptions, a decreased immune response and an increased mortality. The aim of the study is to investigate the EBP influence on the levels of nonessential amino acids in the blood plasma of patients with sepsis. 28 patients diagnosed with “sepsis” were selected. Standard treatment protocols of plasma filtration, hemofiltration and hemadsorption with various sorbents were used. A significant decrease in the levels of asparagine, phosphoethanolamine, proline; α-aminobutyric acid showed a significant increase in these levels in patients who underwent “Proteasosorb” sorbent hemadsorption. A significant decrease in the levels of ornithine, aspartic acid, 3-methylhistidine, 1-methylhistidine in patients treated with hemofiltration was found. The EBP methods significantly influence the amino acid metabolism.
About the Authors
R. E. YakubtsevichBelarus
Yakubtsevich Ruslan E. - D. Sc. (Medicine), Associate professor, Head of the Department, Grodno State Medical University.
80, Gorky Str., 230009, Grodno.
N. V. Belyavsky
Belarus
Belyavsky Nickolay V. - Anesthesiologist-rheanimatologist, Grodno Regional Clinical Hospital.
52, Leninsky Komsomol Boulevard, 230030, Grodno.
A. A. Glazev
Belarus
Glazev Anton A. - Ph. D. (Biology), Deputy Vice-Rector, Yanka Kupala Grodno State University.
22, Ozheshko Str., 230023, Grodno.
S. D. Klisa
Belarus
Klisa Sergey D. - Junior researcher, Yanka Kupala Grodno State University.
22, Ozheshko Str., 230023, Grodno.
References
1. Lee J. M., Lee H. B. Clinical year in review 2014: critical care medicine. Tuberculosis and Respiratory Diseases (Seoul), 2014, vol. 77, no. 1, pp. 6-12. https://doi.org/10.4046/trd.2014.77.1.6
2. Rimmele T., Kellum J. A. Clinical review: blood purification for sepsis. Critical Care, 2011, vol. 15, no. 1, art. 205. https://doi.org/10.1186/cc9411
3. Ankawi G., Neri M., Zhang J., Breglia A., Ricci Z., Ronco C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Critical Care, 2018, vol. 22, no. 1, art. 262. https://doi.org/10.1186/s13054-018-2181-z
4. Michie H. R. Metabolism of sepsis and multiple organ failure. World Journal of Surgery, 1996, vol. 20, no. 4, pp. 460-464. https://doi.org/10.1007/s002689900072
5. Druml W., Heinzel G., Kleinberger G. Amino acid kinetics in patients with sepsis. American Journal of Clinical Nutrition, 2001, vol. 73, no. 5, pp. 908-913. https://doi.org/10.1093/ajcn/73.5.908
6. Biolo G., Toigo G., Ciocchi B., Situlin R., Iscra F., Gullo A., Guarnieri G. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition, 1997, vol. 13, no. 9, suppl. 1, pp. 52S-57S. https://doi.org/10.1016/S0899-9007(97)83044-4
7. Sekine A., Okamoto M., Kanatani Y., Sano M., Shibata K., Fukuwatari T. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro. Springer Plus, 2015, vol. 4, art. 48. https://doi.org/10.1186/s40064-015-0826-9
8. Ristagno G., Latini R., Vaahersalo J., Masson S., Kurola J., Varpula T., Lucchetti J., Fracasso C., Guiso G., Montanelli A., Barlera S., Gobbi M., Tiainen M., Pettila V., Skrifvars M. B., the FINNRESUSCI Investigators. Early activation of the kynurenine pathway predicts early death and long-term outcome in patients resuscitated from out-of-hospital cardiac arrest. Journal of the American Heart Association, 2014, vol. 3, no. 4, p. e001094. https://doi.org/10.1161/JAHA.114.001094
9. Karakula-Juchnowicz H., Flis M., Szymona K., Kuczynska M., Stelmach E., Kowal-Popczak A. New prospects for antipsychotic treatment - the role of the kynurenine pathway. Psychiatria Polska, 2014, vol. 48, no. 6, pp. 1167-1177. https://doi.org/10.12740/PP/25520
10. Wijnands K. A., Castermans T. M., Hommen M. P., Meesters D. M., Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients, 2015, vol. 7, no. 3, pp. 1426-1463. https://doi.org/10.3390/nu7031426
11. Dellinger R. P., Levy M. M., Rhodes A., Annane D., Gerlach H., Opal S. M., Sevransky J. E., Sprung Ch. L., Douglas I. S., Jaeschke R., Osborn T. M., Nunnally M. E., Townsend S. R., Reinhart K., Kleinpell R. M., Angus D. C., Deutschman C. S., Machado F. R., Rubenfeld G. D., Webb S. A., Beale R. J., Vincent J.-L., Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Critical Care Medicine, 2013, vol. 41, no. 2, pp. 580-637. https://doi.org/10.1097/CCM.0b013e31827e83af
12. Bone R. C., Balk R. A., Cerra F. B., Dellinger R. P., Fein A. M., Knaus W. A., Schein R. M., Sibbald W. J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest, 1992, vol. 101, no. 6, pp. 16441655. https://doi.org/10.1378/chest.101.6.1644
13. Levy M. M., Fink M. P., Marshall J. C., Abraham E., Angus D., Cook D., Cohen J., Opal S. M., Vincent J. L., Ramsay G. SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. Critical Care Medicine, 2003, vol. 31, no. 4, pp. 1250-1256. https://doi.org/10.1097/01.ccm.0000050454.01978.3b
14. Kirkovskii V. V., Kolesnikova I. G., Lobacheva G. A., Sedelkina E. L. Biospecific hemosorbents. The successes and problems. Neotlozhnaya meditsinskaya pomoshch' = Emergency Medical Care, 2016, no. 2, pp. 16-19 (in Russian).
15. Patel D., Witt S. N. Ethanolamine and phosphatidylethanolamine: partners in health and disease. Oxidative Medicine and Cellular Longevity, 2017, art. 4829180. https://doi.org/10.1155/2017/4829180
16. Diment S., Martin K. J., Stahl P. D. Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. Journal of Biological Chemistry, 1989, vol. 264, no. 23, pp. 13403-13406.
17. Barrett A. J. Cathepsin D: the lysosomal aspartic proteinase. Ciba Foundation Symposium, 1979, no. 75, pp. 37-50. https://doi.org/10.1002/9780470720585.ch3
18. Conus S., Perozzo R., Reinheckel T., Peters C., Scapozza L., Yousefi S., Simon H. U. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. Journal of Experimental Medicine, 2008, vol. 205, no. 3, pp. 685-698. https://doi.org/10.1084/jem.20072152
19. Maxvold N. J., Smoyer W. E., Custer J. R., Bunchman T. E. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Critical Care Medicine, 2000, vol. 28, no. 4, pp. 1161-1165. https://doi.org/10.1097/00003246-200004000-00041
20. Aranibar N., Vassallo J. D., Rathmacher J., Stryker S., Zhang Y., Dai J., Janovitz E. B., Robertson D., Reily M., Lowe-Krentz L., Lehman-McKeeman L. Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling. Analytical Biochemistry, 2011, vol. 410, no. 1, pp. 84-91. https://doi.org/10.1016/j.ab.2010.11.023
21. Betrosian A., Thireos E., Kofinas G., Balla M., Papanikolaou M., Georgiadis G. Bacterial sepsis-induced rhabdomyolysis. Intensive Care Medicine, 1999, vol. 25, no. 5, pp. 469-474. https://doi.org/10.1007/s001340050882