Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Spin-dependant tunneling to the surface states of titanium dioxide

https://doi.org/10.29235/1561-8323-2020-64-6-670-677

Abstract

Results of the simulation of spin-dependant tunneling of electrons to the surface states of the titanium dioxide, which are created by adsorbed organic impurities are performed. Tunneling transparency for sunlight generated electrons is calculated by the Phase function method. A ferromagnetic film is considered to be an injector of spin-dependent electrons to the titanium dioxide. It is shown that electron spin polarization at the surface states reaches 10–25 %. It can contribute to the spin enhanced catalysis peeling a surface from organic impurities.

About the Authors

T. N. Sidorova
Belarusian State University of Informatics and Radioelectronics
Belarus

Sidorova Tatiana N. – Junior researcher 

6, P. Brovka Str., 220013, Minsk



A. L. Danilyuk
Belarusian State University of Informatics and Radioelectronics
Belarus

Danilyuk Alexandr L. – Ph. D. (Physics and Mathematics), Associate Professor

6, P. Brovka Str., 220013, Minsk



V. E. Borisenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Borisenko Victor E. – D. Sc. (Physics and Mathematics), Professor, Head of the Department

6, P. Brovka Str., 220013, Minsk



References

1. Konstantinova E. A., Kushnikov M. P., Zaitsev V. B., Kytin V. G., Marikutsa A. V., Kashkarov P. K., Trusov G. V., Sedegov A. S. High photocatalytic activity nanomaterials based on titanium dioxide. Nanotechnologies in Russia, 2019, vol. 14, no. 5–6, pp. 190–196. https://doi.org/10.1134/s1995078019030078

2. Barrera M., Pla J., Bocchi C., Migliori A. Antireflecting-passivating dielectric films on crystalline silicon solar cells for space applications. Solar Energy Materials and Solar Cells, 2008, vol. 92, no. 9, pp. 1115–1122. https://doi.org/10.1016/j.solmat.2008.03.021

3. Soga T. Nanostructured Materials for Solar Energy Convertion. Amsterdam, 2006, pp. 200–216. https://doi.org/10.1016/b978-0-444-52844-5.x5000-8

4. Brus V. V., Ilashchuk M. I., Kovalyuk Z. D., Maryanchuk P. D., Ulyanytsky K. S. Electrical and photoelectrical properties of photosensitive heterojunctions n-TiO2/p-CdTe. Semiconductor Sciences and Technology, 2011, vol. 26, no. 12, pp. 125006. https://doi.org/10.1088/0268-1242/26/12/125006

5. Denisov N. M., Baglov A. V., Borisenko V. E., Drozdova E. V. Preparation and antibacterial properties of composite nanostructures from titanium and copper oxides. Inorganic Materials, 2016, vol. 52, no. 5, pp. 523–528. https://doi.org/10.1134/s0020168516050034

6. Artem’ev Yu. M., Ryabchuk V. K. Introduction to Heterogeneous Photocatalysis. Saint Petersburg, Publisher St. Petersburg state university, 1999. 303 p. (in Russian).

7. Linsebigler A. L., Lu G., Yates J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995, vol. 95, no. 3, pp. 735–758. https://doi.org/10.1021/cr00035a013

8. Sharma B. L., Purohit R. K. Semiconductor Heterojunctions. Oxford, 1974. 224 p. https://doi.org/10.1016/C2013-0-10076-1

9. Buchachenko A. L., Berdinsky V. L. Spin catalysis as a new type of catalysis in chemistry. Russian Chemical Reviews, 2004, vol. 73, no. 11, pp. 1033–1039. https://doi.org/10.1070/rc2004v073n11abeh000888

10. Gritsenko D. V., Shaǐmeev S. S., Atuchin V. V., Grigor’eva T. I., Pokrovskiǐ L. D., Pchelyakov O. P., Gritsenko V. A., Aseev A. L., Lifshits V. G. Two-band conduction in TiO2. Physics of the Solid State, 2006, vol. 48, no. 2, pp. 224–228. https://doi.org/10.1134/s1063783406020053

11. Maslov V. P., Fedoruk M. V. Quasiclassical approximation for the equations of quantum mechanics. Moscow, Nauka Publ., 1976. 296 p. (in Russian).

12. Panfilenok A. S., Danilyuk A. L., Borisenko V. E. Oscillations of tunnel magnetoresistance in ferromagnet–insulator–ferromagnet structures. Technical Physics, 2008, vol. 53, no. 4, pp. 479–484. https://doi.org/10.1134/s1063784208040142

13. Babikov V. V. Phase function method in quantum mechanics. Moscow, Nauka Publ., 1976. 224 p. (in Russian).


Review

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)