Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Water-absorbing materials based on polymer hydrogel and bentonite

https://doi.org/10.29235/1561-8323-2020-64-6-678-684

Abstract

The article deals with the production, sorption and rheological properties of composite materials based on polymer hydrogel and bentonite. It is shown that bentonite prevents the collapse of the hydrogel in aqueous solutions of electrolytes and leads to an increase in the moisture content after the collapse. After several repeated cycles of swelling in water, followed by drying at 60 and 110 °C, the degree of swelling of the composite is higher than that of the hydrogel. In the temperature range from 20 to 40 °C, the polymer hydrogel and the composite are able to withstand at least ten cycles of swelling and drying without changing the degree of swelling.

About the Author

E. V. Vorobieva
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vorobieva Elena V. – D. Sc. (Chemistry), Professor, Head of the Laboratory

9/1, Surganov Str., 220072, Minsk



References

1. Rogovina L. Z., Vasil’ev V. G., Braudo E. E. Definition of the concept of polymer gel. Polymer Science, Series C, 2008, vol. 50, no. 1, pp. 85–92. https://doi.org/10.1134/s1811238208010050

2. Osada Y., Gong J. P., Tanaka Y. Polymer gels. Journal of Macromolecular Science, 2004, vol. 44, no. 1, pp. 87–112. https://doi.org/10.1081/mc-120027935

3. Filippova O. E. Responsive polymer gels. Vysokomolekulyarnye soedineniya. Seriya C = Polymer Science, Series C, 2000, vol. 42, no. 12, pp. 2328–2352.

4. Peppas N. A., Hilt J. Z., Khademhosseini A., Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials, 2006, vol. 18, no. 11, pp. 1345–1360. https://doi.org/10.1002/adma.200501612

5. Abd El-Mohdy H. L. Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. Journal of Polymer Research, 2013, vol. 20, no. 6, pp. 177–189. https://doi.org/10.1007/s10965-013-0177-6

6. Evsikova O. V., Starodubtsev S. G., Khokhlov A. R. synthesis, swelling, and adsorption properties of composites based on poly(acrylamide) gel and sodium bentonite. Polymer Science. Series A, 2002, vol. 44, no. 5, pp. 491–496 (in Russian).

7. Sokolov V. N. Clay rocks and their properties. Sorosovskii obrazovatel’nyi zhurnal [Soros Educational Journal], 2000, vol. 6, no. 9, pp. 59–65 (in Russian).

8. Osipov V. I., Sokolov V. N. Clays and their properties. Composition, structure and formation of properties. Moscow, GEOS Publ., 2013. 576 p. (in Russian).

9. Vorobieva E. V., Krutko N. P., Basalyga I. I., Matrunchik Yu. V. Polymer complexes based on polyacrylic acid, polyethylene glycol and polyvinyl alcohol. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 2008, no. 1, pp. 28–32 (in Russian).

10. Arndt K. F., Richter A., Ludwig S., Zimmermann J., Kressler J., Kuckling D., Adler H.-J. Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polymerica, 1999, vol. 50, no. 11–12, pp. 383–390. https://doi.org/10.1002/(sici)1521-4044(19991201)50:11/12%3C383::aid-apol383%3E3.0.co;2-z

11. De S. K., Aluru N. R., Johnson B., Crone W. C., Beebe D. J., Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. Journal of Microelectromechanical Systems, 2002, vol. 11, no. 5, pp. 544–555. https://doi.org/10.1109/jmems.2002.803281

12. Horkay F., Tasaki I., Basser P. J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules, 2000, vol. 1, no. 1, pp. 84–90. https://doi.org/10.1021/bm9905031

13. Ignatieva Yu. A., Uspenskaya M. V., Borisov O. V., Olekhnovich R. O., Evseev R. A., Kasanov K. N. Investigation of sorption characteristics of polymeric mineral-filled composites for medicine. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and technical bulletin of information technologies, mechanics and optics], 2014, vol. 5, no. 93, pp. 52–56 (in Russian).

14. Schramm G. Fundamentals of practical rheology and rheometry. Moscow, KolosS Publ., 2003. 312 p. (in Russian).


Review

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)