Compact difference schemes for Klein–Gordon equation with variable coefficients
https://doi.org/10.29235/1561-8323-2021-65-1-25-32
Abstract
About the Authors
P. P. MatusBelarus
Matus Piotr P. – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Chief researcher
11, Surganov Str., 220072, Minsk
H.T.K. Anh
Belarus
Hoang Thi Kieu Anh – Postgraduate student
4, Nezavisimosti Ave., 220030, Minsk
References
1. Matus P. P., Anh H. T. K. Compact difference schemes for Klein–Gordon equation. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 5, pp. 526–533 (in Russian). https://doi.org/10.29235/1561-8323-2020-64-5-526-533
2. Paasonen V. I. Generalization of high-precision methods for second-order nonlinear equations in orthogonal coordinate systems. Chislennye metody mekhaniki sploshnoi sredy = Russian Journal of Numerical Analysis and Mathematical Modelling, 1977, vol. 8, no. 2, pp. 94–99 (in Russian).
3. Samarskii A. A. Schemes of high-order accuracy for the multi-dimensional heat conduction equation. USSR Computational Mathematics and Mathematical Physics, 1963, vol. 3, no. 5, pp. 1107–1146. https://doi.org/10.1016/0041-5553(63)90104-6
4. Samarskii A. A. Theory of difference schemes. Moscow, Nauka Publ., 1989. 616 p. (in Russian).
5. Paasonen V. I. Compact schemes for systems of second-order equations without mixed derivatives. Russian Journal of Numerical Analysis and Mathematical Modelling, 1998, vol. 13, no. 4. https://doi.org/10.1515/rnam.1998.13.4.335
6. Paasonen V. I. Dissipative asymmetric compact schemes for the equation of oscillations. Vychislitelnye technologii = Computational technologies. 2001, vol. 6, no. 2, pp. 475–479 (in Russian).
7. Samarskii A. A., Matus P. P., Vabishchevich P. N. Difference schemes with operator factors. Dordrecht, 2002. 384 p. https://doi.org/10.1007/978-94-015-9874-3
8. Samarskii A. A., Gulin A. V. Stability of difference schemes. Moscow, Nauka Publ., 1973. 415 p. (in Russian).