Modeling of circular quantum dots localized in double heterostructures
https://doi.org/10.29235/1561-8323-2021-65-1-33-39
Abstract
About the Authors
V. V. KudryashovBelarus
Kudryashov Vladimir V. – Ph. D. (Physics and Mathematics), Leading researcher
68, Nezavisimosti Ave., 220072, Minsk
A. V. Baran
Belarus
Baran Aleksandr V. – Ph. D. (Physics and Mathematics), Senior researcher
68, Nezavisimosti Ave., 220072, Minsk
References
1. Bulgakov E. N., Sadreev A. F. Spin polarization in quantum dots by radiation field with circular polarization. Journal of Experimental and Theoretical Physics Letters, 2001, vol. 73, pp. 505–509. https://doi.org/10.1134/1.1387515
2. Tsitsishvili E., Lozano G. S., Gogolin A. O. Rashba coupling in quantum dots: An exact solution. Physical Review B, 2004, vol. 70, no. 11, art. 115316 (11 p.). https://doi.org/10.1103/physrevb.70.115316
3. de Sousa R., Das Sarma S. Gate control of spin dynamics in III–V semiconductor quantum dots. Physical Review B, 2003, vol. 68, no. 15, art. 153330 (6 p.). https://doi.org/10.1103/physrevb.68.155330
4. Kuan W. H., Tang S. C., Xu W. Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction. Journal of Applied Physics, 2004, vol. 95, no. 11, pp. 6368–6373. https://doi.org/10.1063/1.1710726
5. Kudryashov V. V. Electron in a quantum dot with account of the Rashba spin-orbit interaction. Proceedings of the XIII International School-Conference “Foundations and Advances in Nonlinear Science”. Vol. 13. Minsk, 2006, pp. 125–130.
6. Chaplik A. V., Magarill L. I. Bound states in a two-dimensional short range potential induced by the spin-orbit interaction. Physical Review Letters, 2006, vol. 96, no. 12, art. 126402 (4 p.). https://doi.org/10.1103/physrevlett.96.126402
7. Abramovitz M., Stegun I. A. (eds.) Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. New York, 1970. 1060 p.