Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Influence of lattice deformations on the electronic structure of the molybdenum disulfide monolayer

https://doi.org/10.29235/1561-8323-2021-65-1-40-45

Abstract

The possibilities and conditions for modifying the band gap and the behavior of interband transitions under compressive and tensile strains in the crystal lattice of a molybdenum disulfide monolayer have been determined by theoretical modeling. It is shown that depending on the value and direction of the strains the compound may be a direct-gap or indirect-gap semiconductor, and the conditions for such transformations are determined. The results demonstrate a potential use of the molybdenum disulfide monolayer in nanoelectronic devices of new generation in which controlled transport of charge carriers is possible

About the Authors

A. V. Krivosheeva
Belarusian State University of Informatics and Radioelectronics
Belarus

Krivosheeva Anna V. – D. Sc. (Physics and Mathematics), Leading researcher

6, P. Brovka Str., 220013, Minsk



V. L. Shaposhnikov
Belarusian State University of Informatics and Radioelectronics
Belarus

Shaposhnikov Victor L. – Ph. D. (Physics and Mathematics), Leading researcher

6, P. Brovka Str., 220013, Minsk



V. E. Borisenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Borisenko Victor E. – D. Sc. (Physics and Mathematics), Professor, Head of the Department

6, P. Brovka Str., 220013, Minsk



References

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, no. 5696, pp. 666–669. https://doi.org/10.1126/science.1102896

2. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, vol. 6, no. 3, pp. 147–150. https://doi.org/10.1038/nnano.2010.279

3. Korn T., Heydrich S., Hirmer M., Schmutzler J., Schüller C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters, 2011, vol. 99, no. 10, art. 102109 (1–3). https://doi.org/10.1063/1.3636402

4. Radisavljevic B., Whitwick M. B., Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, vol. 5, no. 12, pp. 9934–9938. https://doi.org/10.1021/nn203715c

5. Yin Z., Li H., Li H., Jiang L., Shi Yu., Sun Yi., Lu G., Zhang Q., Chen X., Zhang H. Single-layer MoS2 phototransistors. ACS Nano, 2012, vol. 6, no. 1, pp. 74–80. https://doi.org/10.1021/nn2024557

6. Scalise E., Houssa M., Pourtois G., Afanas’ev V., Stesmans A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 2012, vol. 5, no. 1, pp. 43–48. https://doi.org/10.1007/s12274-011-0183-0

7. Krivosheeva A. V., Shaposhnikov V. L., Borisenko V. E., Lazzari J. L., Skorodumova N. V., Tay B. K. Band gap modifications of two-dimensional defected MoS2. International Journal of Nanotechnology, 2015, vol. 12, no. 8/9, pp. 654–662. https://doi.org/10.1504/ijnt.2015.068886

8. Shaposhnikov V. L., Krivosheeva A. V., Borisenko V. E. Impact of defects on electronic properties of heterostructures constructed from monolayers of transition metal dichalcogenides. Physica Status Solidi B, 2019, vol. 256, no. 5, art. 1800355 (1–7). https://doi.org/10.1002/pssb.201800355

9. Krivosheeva A. V., Shaposhnikov V. L., Borisenko V. E., Lazzari J. L. Energy band gap tuning in Te-doped WS2/WSe2 heterostructures. Journal of Materials Science, 2020, vol. 55, no. 23, pp. 9695–9702. https://doi.org/10.1007/s10853-020-04485-x

10. Yun W. S., Han S. W., Hong S. C., Kim I. G., Lee J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B, 2012, vol. 85, no. 3, art. 033305(1–5). https://doi.org/10.1103/physrevb.85.033305

11. Tao P., Guo H., Yang T., Zhang Z. Strain-induced magnetism in MoS2 monolayer with defects. Journal of Applied Physics, 2014, vol. 115, no. 5, art. 054305. https://doi.org/10.1063/1.4864015

12. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865

13. Kresse G., Furthmüller J. Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, vol. 54, no. 16, pp. 11169–11186. https://doi.org/10.1103/physrevb.54.11169

14. Coehoorn R., Haas C., Dijkstra J., Flipse C. J. F., de Groot R. A., Wold A. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical Review B, 1987, vol. 35, no. 12, pp. 6195–6202. https://doi.org/10.1103/physrevb.35.6195

15. Mak K. F., Lee C., Hone J., Shan J., Heinz T. F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, vol. 105, no. 13, art. 136805 (1–4). https://doi.org/10.1103/physrevlett.105.136805


Review

Views: 585


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)