Influence of lattice deformations on the electronic structure of the molybdenum disulfide monolayer
https://doi.org/10.29235/1561-8323-2021-65-1-40-45
Abstract
About the Authors
A. V. KrivosheevaBelarus
Krivosheeva Anna V. – D. Sc. (Physics and Mathematics), Leading researcher
6, P. Brovka Str., 220013, Minsk
V. L. Shaposhnikov
Belarus
Shaposhnikov Victor L. – Ph. D. (Physics and Mathematics), Leading researcher
6, P. Brovka Str., 220013, Minsk
V. E. Borisenko
Belarus
Borisenko Victor E. – D. Sc. (Physics and Mathematics), Professor, Head of the Department
6, P. Brovka Str., 220013, Minsk
References
1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, no. 5696, pp. 666–669. https://doi.org/10.1126/science.1102896
2. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, vol. 6, no. 3, pp. 147–150. https://doi.org/10.1038/nnano.2010.279
3. Korn T., Heydrich S., Hirmer M., Schmutzler J., Schüller C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters, 2011, vol. 99, no. 10, art. 102109 (1–3). https://doi.org/10.1063/1.3636402
4. Radisavljevic B., Whitwick M. B., Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, vol. 5, no. 12, pp. 9934–9938. https://doi.org/10.1021/nn203715c
5. Yin Z., Li H., Li H., Jiang L., Shi Yu., Sun Yi., Lu G., Zhang Q., Chen X., Zhang H. Single-layer MoS2 phototransistors. ACS Nano, 2012, vol. 6, no. 1, pp. 74–80. https://doi.org/10.1021/nn2024557
6. Scalise E., Houssa M., Pourtois G., Afanas’ev V., Stesmans A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 2012, vol. 5, no. 1, pp. 43–48. https://doi.org/10.1007/s12274-011-0183-0
7. Krivosheeva A. V., Shaposhnikov V. L., Borisenko V. E., Lazzari J. L., Skorodumova N. V., Tay B. K. Band gap modifications of two-dimensional defected MoS2. International Journal of Nanotechnology, 2015, vol. 12, no. 8/9, pp. 654–662. https://doi.org/10.1504/ijnt.2015.068886
8. Shaposhnikov V. L., Krivosheeva A. V., Borisenko V. E. Impact of defects on electronic properties of heterostructures constructed from monolayers of transition metal dichalcogenides. Physica Status Solidi B, 2019, vol. 256, no. 5, art. 1800355 (1–7). https://doi.org/10.1002/pssb.201800355
9. Krivosheeva A. V., Shaposhnikov V. L., Borisenko V. E., Lazzari J. L. Energy band gap tuning in Te-doped WS2/WSe2 heterostructures. Journal of Materials Science, 2020, vol. 55, no. 23, pp. 9695–9702. https://doi.org/10.1007/s10853-020-04485-x
10. Yun W. S., Han S. W., Hong S. C., Kim I. G., Lee J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B, 2012, vol. 85, no. 3, art. 033305(1–5). https://doi.org/10.1103/physrevb.85.033305
11. Tao P., Guo H., Yang T., Zhang Z. Strain-induced magnetism in MoS2 monolayer with defects. Journal of Applied Physics, 2014, vol. 115, no. 5, art. 054305. https://doi.org/10.1063/1.4864015
12. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865
13. Kresse G., Furthmüller J. Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, vol. 54, no. 16, pp. 11169–11186. https://doi.org/10.1103/physrevb.54.11169
14. Coehoorn R., Haas C., Dijkstra J., Flipse C. J. F., de Groot R. A., Wold A. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical Review B, 1987, vol. 35, no. 12, pp. 6195–6202. https://doi.org/10.1103/physrevb.35.6195
15. Mak K. F., Lee C., Hone J., Shan J., Heinz T. F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, vol. 105, no. 13, art. 136805 (1–4). https://doi.org/10.1103/physrevlett.105.136805