Association of СОМТ, DRD2/ANKK1, MTHFR, MIR 137, DNMT3B polymorphisms with the clinical features of schizophrenia patients in acute stage and remission
https://doi.org/10.29235/1561-8323-2021-65-1-76-86
Abstract
About the Authors
H. S. KandratsenkaBelarus
Kandratsenka Hanna S. – Junior researcher
27, Akademicheskaya Str., 220072, Minsk
N. G. Danilenko
Belarus
Danilenko Nina G. – Ph. D. (Biology), Assistant professor, Leading researcher
27, Akademicheskaya Str., 220072, Minsk
I. M. Haylaenka
Belarus
Haylaenka Innesa M. – Ph. D. (Biology), Leading researcher
27, Akademicheskaya Str., 220072, Minsk
O. A. Skugarevsky
Belarus
Skugarevsky Oleg A. – D. Sc. (Medicine), Professor, Head of the Department; Leading researcher
83, Dzerzhinsky Ave., 220116, Minsk; 152, Dolginovsky Trakt, 220053, Minsk
V. Marshe
Canada
Marshe Victoria – Researcher
Toronto, Canada
J. L. Kennedy
Canada
Kennedy James L. – D. Sc. (Medicine), Professor. Head of Molecular Science
Toronto, Canada
O. G. Davydenko
Belarus
Davydenko Oleg G. – Corresponding Member, D. Sc. (Biology), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. Diagnosis and treatment of schizophrenia: clinical guidelines. Available at: https://rokpb.ru/doc/Klin_rek/Shizofr.pdf (accessed 12 January 2021) (in Russian).
2. Osmanova D. Z., Tiguntsev V. V., Mikhalitskaia E. V., Pozhidaev I. V., Vyalova N. M., Stegniy V. N. The role of dopamine receptor genes in clinical polymorphism of schizophrenia, response to pharmacotherapy and antipsyhotic-induced side effects. Nauchnoe obozrenie. Biologicheskie nauki = Scientific Review. Biological science, 2018, no. 5, pp. 22–27 (in Russian).
3. Davis K. L., Kahn R. S., Ko G., Davidson M. Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry, 1991, vol. 148, no. 11, pp. 1474–1486. https://doi.org/10.1176/ajp.148.11.1474
4. Nkam I., Ramoz N., Breton F., Mallet J., Gorwood P., Dubertret C. Impact of DRD2/ANKK1 and COMT Polymorphisms on Attentionand Cognitive Functions in Schizophrenia. PLoSONE, 2017, vol. 12, no. 1, pp. 147–170. https://doi.org/10.1371/journal.pone.0170147
5. Huang E., Clement C. Z., Lisoway A., Maciukiewicz M., Felsky D., Tiwari K. A., Bishop R. J., Ikeda M., Molero P., Ortuno F., Porcelli S., Samochowiec J., Mierzejewski P., Gao S., Crespo-Facorro B., Pelayo-Terán M. J., Kaur H., Kukreti R., Meltzer Y. H., Lieberman A. J., Potkin G. S., Müller J. D., Kennedy L. J. Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. International Journal of Neuropsychopharmacology, 2016, vol. 19, no. 5, pyv132. https://doi.org/10.1093/ijnp/pyv132
6. Harrison P. J., Tunbridge E. M. Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology, 2008, vol. 33, no. 13, pp. 3037–3045. https://doi.org/10.1038/sj.npp.1301543
7. Molero P., Ortuño F., Zalacain M., Patiño-García A. Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment. Pharmacogenomics Journal, 2007, vol. 7, no. 6, pp. 418–426. https://doi.org/10.1038/sj.tpj.6500441
8. González-Castro T. B., Hernández-Díaz Y., Juárez-Rojop I. E., López-Narváez M. L., Tovilla-Zárate C. A., Fresan A. The Role of a Catechol-O-Methyltransferase (COMT) Val158Met Genetic Polymorphism in Schizophrenia: A Systematic Review and Updated Meta-analysis on 32,816 Subjects. Neuromolecular Medicine, 2016, vol. 18, no. 2, pp. 216–231. https://doi.org/10.1007/s12017-016-8392-z
9. Coppede F., Zitarosa M.-T., Migheli F., Gerfo A. L., Bagnoli S., Dardano A., Nacmias B., Mancuso M., Monzani F., Siciliano G., Sorbi S., Migliore L. DNMT3B promoter polymorphisms and risk of late onset Alzheimer’s disease. Current Alzheimer Research, 2012, vol. 9, no. 5, pp. 550–554. https://doi.org/10.2174/156720512800618062
10. Yadav U., Kumar P., Gupta S., Rai V. Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian Journal of Psychiatry, 2016, vol. 20, pp. 41–51. https://doi.org/10.1016/j.ajp.2016.02.002
11. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, vol. 511, no. 7510, pp. 421–427. https://doi.org/10.1038/nature13595
12. Guan F., Zhang B., Yan T., Li L., Liu F., Li T., Feng Z., Zhang B., Liu X., Li S. MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. Schizophrenia Research, 2014, vol. 152, no. 1, pp. 97–104. https://doi.org/10.1016/j.schres.2013.11.004
13. Warburton A., Breen G., Bubb V. J., Quinn J. P. A GWAS SNP for Schizophrenia is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression. Schizophrenia Bulletin, 2016, vol. 42, no. 4, pp. 1003–1008. https://doi.org/10.1093/schbul/sbv144
14. Liu B., Zhang X., Hou B., Li J., Qiu C., Qin W., Yu C., Jiang T. The impact of MIR137 on dorsolateral prefrontal-hippocampal functional connectivity in healthy subjects. Neuropsychopharmacology, 2014, vol. 39, no. 9, pp. 2153–2160. https://doi.org/10.1038/npp.2014.63