Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Tribotechnical properties of sintered friction material based on copper with the additives of the ultrafine powder of aluminide of Ti–46Al–8Cr system

https://doi.org/10.29235/1561-8323-2021-65-1-103-110

Abstract

The article presents the results of study of the effect of additives of an ultrafine powder of the Ti–46Al–8Cr system obtained by MASHS on the tribotechnical properties of a friction material based on BrO6 bronze. It is shown that in the range of powder additive concentrations 0.5–1.5 wt. %, the dynamic coefficient of friction increases from 0.04 to 0.055, in the range of 1.5–2.5 % – to 0.055–0.058. The introduction of the 0.5–1.0 % Ti–46Al–8Cr powder permitted to reduce the wear rate of the friction material from 4.0 to 3.7 μm/km. An increase in the additive to 2.5 % led to an increase in the material wear rate up to 6 μm/km.

About the Authors

A. Ph. Ilyushchanka
O. V. Roman Powder Metallurgy Institute
Belarus

Ilyushchanka Aliaxander Ph. – Corresponding Member, D. Sc. (Engineering), Professor, Director

41, Platonov Str., 220005, Minsk



T. L. Talako
O. V. Roman Powder Metallurgy Institute
Belarus

Talako Tatyana L. – D. Sc. (Engineering), Associate рrofessor, Deputy Academician-Secretary

41, Platonov Str., 220005, Minsk



A. V. Leshok
O. V. Roman Powder Metallurgy Institute
Belarus

Leshok Andrey V. – Ph. D. (Engineering), Senior Researcher

41, Platonov Str., 220005, Minsk



A. I. Letsko
O. V. Roman Powder Metallurgy Institute
Belarus

Letsko Andrey I. – Ph. D. (Engineering), Associate рrofessor, Head of the Laboratory

41, Platonov Str., 220005, Minsk



T. I. Pinchuk
O. V. Roman Powder Metallurgy Institute
Belarus

Pinchuk Tatyana I. – Researcher

41, Platonov Str., 220005, Minsk



References

1. Leshok A. V., Dyachkova L. N., Ilyushchenko A. F., Rogovoy A. N., Alekseenko N. A. Influence of copper frictional material composition on structure and tribotechnical properties. Journal of Friction and Wear, 2019, vol. 40, no. 6, pp. 495–500. https://doi.org/10.3103/s1068366619060151

2. Fedorchenko I. M., Pugina L. I. Composite sintered antifriction materials. Kiev, Naukovaya dumka Publ., 1980. 404 p. (in Russian).

3. Ilyuschenko A. F. Current developments in powder metallurgy for mechanical engineering. Mekhanika mashin, mekhanizmov i materialov = Mechanics of Machines, Mechanisms and Materials, 2012, vol. 20–21, no. 3–4, pp. 113–120 (in Russian).

4. Fedorchenko I. M., Kryachek V. M., Panaioti I. I. Modern friction materials. Kiev, Naukovaya dumka Publ., 1975. 334 p. (in Russian).

5. Ilyuschenko A. F., Dmitrovich A. A., Leshok A. V. Sintered metal-ceramic friction composite materials and products. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2011, no. 2, pp. 10–17 (in Russian).

6. Kiparisov S. S. Powder metallurgy. Moscow, Metallurgiya Publ., 1980. 496 p. (in Russian).

7. Shurkin P. K. Influence of eutectic-forming elements (Ca, Ni, Ce, Fe) on the structure, manufacturability and mechanical properties of aluminum alloys containing zinc and magnesium. Moscow, 2020.

8. Skakov Yu. A. Intermetallic compounds. Knunyants I. L. (ed.). Chemical encyclopedia. Vol. 2: Duffa-Medi. Moscow, Sovetskaya entsiklopediya Publ., 1990. 671 p. (in Russian).

9. Kartavykh A. V., Kaloshkin S. D., Cherdyntsev V. V., Gorshenkov M. V., Sviridova T. A., Borisova Yu. V., Senatov F. S., Maksimkin A. V. Use of microstructured intermetallides in turbine manufacture. Part I. Current state and prospects. Materialovedenie [Materials Science], 2012, no. 5, pp. 3–11 (in Russian).

10. Kolobov Yu. R., Kablov E. N., Kozlov E. V., Koneva N. A., Povarova K. B., Grabovetskaya G. P., Buntushkin V. P., Bazyleva O. A., Muboyadzhyan S. A., Budinovskii S. A. Structure and properties of intermetallic materials with nanophase hardening. Moscow, Misis, 2008. 328 p. (in Russian).

11. Dyachkova L. N., Letsko A. I., Fel’dshtein E. E., Kelek P., Kelek T. Tribotechnical properties of sintered bronze strengthened by aluminide of Ti–46Al–8Cr. Journal of Friction and Wear, 2017, vol. 38, no. 2, pp. 98–103. https://doi.org/10.3103/s1068366617020088

12. Talako T. L. Powders obtained by mechanically activated self-propagating high-temperature synthesis for heat-resistant, wear-resistant and radio-absorbing gas-thermal coatings. Minsk, 2015. 398 p. (in Russian).

13. Azhazha V. М., Sverdlov V. Ya., Tikhonovsky M. A., Kondratov A. A., Vinogradov D. V., Ruducheva Т. Yu., Pikalov A. I. Structure and mechanical properties of the high-tin bronze alloyed by titanium and germanium. Voprosy atomnoi nauki i tekhniki = Problems of Atomic Science and Technology. 2006, vol. 15, no. 1 (Vacuum, pure materials, superconductors), pp. 60–66 (in Russian).

14. Pyachin S. A., Ershova T. B., Burkov A. A., Vlasova N. M., Komarova V. S. The use of titanium aluminides for the development of electrospark coatings. Powder Metallurgy аnd Functional Coatings, 2015, no. 1, pp. 55–61 (in Russian). https://doi.org/10.17073/1997-308X-2015-1-55-61

15. Vityaz P. A., Zhornik V. I., Kukareko V. A., Komarov A. I., Senyut V. T. Modification of materials and coatings with nano-sized diamond-containing additives. Minsk, Belaruskaya navuka Publ., 2011. 527 p. (in Russian).

16. Vityaz P. A., Gritsuk V. D., Senyut V. T. Synthesis and application of superhard materials. Minsk, Belaruskaya navuka Publ., 2005. 359 p. (in Russian).


Review

Views: 689


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)