Nickel silicide formation with rapid thermal treatment in the heat balance mode
https://doi.org/10.29235/1561-8323-2021-65-1-111-118
Abstract
About the Authors
V. A. PilipenkoBelarus
Pilipenko Vladimir A. – Corresponding Member, D. Sc. (Engineering), Deputy Director. State Center “Belmicroanalysis"
121A, Kazinets Str., 220108, Minsk
Ja. A. Solovjov
Belarus
Solovjov Jaroslav A. – Ph. D. (Engineering), Deputy Director. “Transistor” Branch
16, Korzhenevsky Str., 220108, Minsk
P. I. Gaiduk
Belarus
Gaiduk Peter I. – D. Sc. (Physics and Mathematics), Professor
5, Kurchatov Str., 220108, Minsk
References
1. Murarka Sh. P. Silicides for ULSI application. Elsevier Science, 1983. 200 p.
2. Chen L. J. Silicide Technology for Integrated Circuits. London, 2004. 279 p. https://doi.org/10.1049/pbep005e
3. Tsuchiya Y., Tobioka A., Nakatsuka O., Ikeda H., Sakai A., Zaima Sh., Yasuda Y. Electrical properties and solid-phase reactions in Ni/Si(100) contacts. Japanese Journal of Applied Physics, 2002, vol. 41, no. 4B, pp. 2450–2454. https://doi.org/10.1143/jjap.41.2450
4. Torregiani C., Maex K., Benedetti A., Bender H., Van Houtte P., Pawlak B. J., Kittl J. A. Impact of Ni-silicide grain orientation on the strain and stress fields induced in patterned silicon. Applied Physics Letters, 2007, vol. 90, no. 5, art. 054101. https://doi.org/10.1063/1.2437064
5. Knoll L., Zhao Q. T., Habicht S., Urban C., Ghyselen B., Mantl S. Ultrathin Ni silicides with low contact resistance on srained and ultrastrained silicon. IEEE Electron device letters, 2010, vol. 31, no. 4, pp. 350–352. https://doi.org/10.1109/led.2010.2041028
6. Sonehara T., Hokazono A., Akutsu H., Sasaki T., Uchida H., Tomita M., Tsujii H., Kawanaka S., Inaba S., Toyoshima Y. Contact resistance reduction of Pt-incorporated NiSi for continuous CMOS scaling: Atomic level analysis of Pt/B/As distribution within silicide films. IEEE International Electron Device Meeting. San Francisco, 2008, pp. 921–924. https://doi.org/10.1109/iedm.2008.4796851
7. Mangelinck D., Dai J. Y., Pan J. S., Lahiri S. K. Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition. Applied Physics Letters, 1999, vol. 75, no. 12, pp. 1736–1738. https://doi.org/10.1063/1.124803
8. Hirsch P. B., Howie A., Nicholson R. B., Pashley D. W., Whelan M. J. Electron microscopy of thin crystals. Moscow, Mir Publ., 1968. 574 p. (in Russian).
9. Tomas G., Goringe M. J. Transmission electron microscopy of materials. John Wiley & Sons Inc., 1987. 388 p.
10. Majni G., Valle F. D., Nobili C. Growth kinetics of NiSi on (100) and (111) silicon. Journal of Physics D: Applied Physics, 1984, vol. 17, no. 5, pp. L77–L81. https://doi.org/10.1088/0022-3727/17/5/002
11. Knauth P., Charaї A., Bergman C., Gas P. Calorimetric analysis of thin-film reactions: Experiments and modeling in the nickel/silicon system. Journal of Applied Physics, 1994, vol. 76, no. 9, pp. 5195–5201. https://doi.org/10.1063/1.357238
12. Natan M. Anomalous first-phase formation in rapidly thermal annealed, thin-layered Si/Ni/Si films. Applied Physics Letters, 1986, vol. 49, no. 5, pp. 257–259. https://doi.org/10.1063/1.97188
13. Borisenko V. E., Hesketh P. J. Rapid thermal processing of semiconductor. New York, 1997. 358 p. https://doi.org/10.1007/978-1-4899-1804-8
14. Solovjov Ja. А., Pilipenko V. A. Effect of rapid thermal treatment temperature on electrophysical properties of nickel films on silicon. Doklady BGUIR, 2020, vol. 18, no. 1, pp. 81–88 (in Russian). http://dx.doi.org/10.35596/1729-7648-2020-18-1-81-88