Processes of electroluminescence degradation of light-emitting structures based on thin silicon oxide and nitride films
https://doi.org/10.29235/1561-8323-2021-65-2-158-167
Abstract
SiO2 /Si, SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si structures have been fabricated by chemical vapor deposition and thermal oxidation of silicon. The elemental composition and thicknesses of dielectric layers have been studied using Rutherford backscattering spectroscopy, scanning electron microscopy, and spectral ellipsometry. The electroluminescence (EL) of the samples has been investigated in the “electrolyte–dielectric–semiconductor” system at a positive bias voltage applied to the silicon substrate. An intense band with maxima at 1.9 eV appears on the EL spectra of the SiO2 /Si sample, while the EL spectra of the SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si samples are characterized by the presence of bands with the maximum values of 1.9, 2.3 and 2.7 eV. The nature of these bands is discussed. Passing a charge in the range of 100–500 mC/ cm2 through the SiO2 /SiN0.9/SiO2 /Si sample, an increase in the EL intensity was recorded in the entire visible range. Passing a charge of 1 C/cm2 through a sample with a three-layer dielectric film resulted in the EL intensity decrease. It can be explained by the upper oxide layer degradation. It has been shown that silicon nitride deposited on top of the SiO2 layer protects the oxide layer from field degradation and premature breakdown. The most stable electroluminescence when exposed to a strong electric field is observed for the structure SiN1.2/SiO2 /Si.
About the Authors
I. A. RomanovBelarus
Romanov Ivan A., Junior Researcher
5, Kurchatov Str., 220108, Minsk
F. F. Komarov
Belarus
Komarov Fadei F., Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory
7, Kurchatov Str., 220108, Minsk
L. A. Vlasukova
Belarus
Vlasukova Liudmila A., Ph. D. (Physics and Mathematics), Head of the Laboratory
5, Kurchatov Str., 220108, Minsk
I. N. Parkhomenko
Belarus
Parkhomenko Irina N., Ph. D. (Physics and Mathematics), Senior researcher
5, Kurchatov Str., 220108, Minsk
N. S. Kovalchuk
Belarus
Kovalchuk Natalia S., Ph. D. (Engineering), Deputy Chief Engineer
121A, Kazinets Str., 220108, Minsk
References
1. Joo B. S., Jang S., Gu M., Jung N., Han M. Effect of Auger recombination induced by donor and acceptor states on luminescence properties of silicon quantum Dots/SiO2 multilayers. Journal of Alloys and Compounds, 2019, vol. 801, pp. 568–572. https://doi.org/10.1016/j.jallcom.2019.06.171
2. Berencen Y., Wutzler R., Rebohle L., Hiller D., Ramirez J. M., Rodriguez J. A., Skorupa W., Garrido B. Intense green-yellow electroluminescence from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Applied Physics Letters, 2013, vol. 103, no. 11, art. 111102 (4 p.). https://doi.org/10.1063/1.4820836
3. Baraban A. P., Bulavinov V. V., Konorov P. P. Electronics of SiO2 layers on silicon. Leningrad, 1988. 304 p. (in Russian).
4. Baraban A. P., Samarin S. N., Prokofiev V. A., Dmitriev V. A., Selivanov A. A., Petrov Y. Luminescence of SiO2 layers on silicon at various types of excitation. Journal of Luminescence, 2019, vol. 205, pp. 102–108. https://doi.org/10.1016/j.jlumin.2018.09.009
5. Romanov I. A., Vlasukova L. A., Komarov F. F., Parkhomenko I. N., Kovalchuk N. S., Mohovikov M. A., Mudryi A. V., Milchanin О. V. Photo- and electroluminescence of oxide-nitride-oxide-silicon structures for silicon-based optoelectronics. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 5, pp. 546–554 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-5-546-554
6. Baraban A. P., Egorov D. V., Askinazi A. y., Miloglyadova L. V. Electroluminescence of Si–SiO2–Si3N4 structures. Technical Physics Letters, 2002, vol. 28, no. 12, pp. 978–980. https://doi:10.1134/1.1535507
7. Gritsenko V. A. Structure of silicon/oxide and nitride/oxide interfaces. Physics-Uspekhi, 2009, vol. 52, no. 9, pp. 869– 877. https://doi.org/10.3367/UFNe.0179.200909a.0921
8. Jeppson K. O., Svensson C. M. Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. Journal of Applied Physics, 1977, vol. 48, no. 5, pp. 2004–2014. https://doi.org/10.1063/1.323909
9. Baraban A. P., Miloglyadova L. V. Formation of defects in the oxide layer of ion-irradiated Si/SiO2 structures. Technical Physics, 2002, vol. 47, no. 5, pp. 569–573. https://doi.org/10.1134/1.1479984
10. Belyi V. I., Vasilyeva L. L., Gritsenko V. A. Silicon nitride in electronics. Novosibirsk, 1982. 200 p. (in Russian).
11. Gritsenko V. A., Meerson E. E., Sinitsa S. P. Unsteady silicon nitride conductivity in high electric fields. Physica Status Solidi (A), 1978, vol. 48, no. 1, pp. 31–37. https://doi.org/10.1002/pssa.2210480105
12. Di Valentin C., Palma G., Pacchioni G. Ab initio study of transition levels for intrinsic defects in silicon nitride. Journal of Physical Chemistry C, 2011, vol. 115, no. 2, pp. 561–569. https://doi.org/10.1021/jp106756f
13. Robertson J. Defects and hydrogen in amorphous silicon nitride. Philosophical magazine B, 1994, vol. 69, no. 2, pp. 307–326. https://doi.org/10.1080/01418639408240111
14. DiMaria D. J., Abernathey J. R. Electron heating in silicon nitride and silicon oxynitride films. Journal of Applied Physics, 1986, vol. 60, no. 5, pp. 1727–31729. https://doi.org/10.1063/1.337265