Construction of the recombinant Escherichia coli strain producing a homologous thermolabile toxin subunit
https://doi.org/10.29235/1561-8323-2021-65-2-185-190
Abstract
Colibacteriosis is an acute zoonotic disease manifested by septicaemia, toxemia, enteritis, body dehydration, and central nervous system damage. Depending on the presence of virulence factors and the nature of interaction with the intestinal mucosa, enterotoxigenic, enteroinvasive, enteropathogenic, and enterohemorrhagic E. coli are isolated. Enterotoxigenic strains of E. coli occupy one of the leading places in the etiological structure of calf colibacteriosis in many livestock farms of the Republic of Belarus. The main reason why this disease develops is the presence of thermolabile and thermostable toxins in the causative strain. The thermolabile toxin subunit B is a potent antigen that allows pet immunity to be acquired against E. coli-induced cattle diarrhea. Many foreign vaccines used against intestinal infections of cattle contain either a native or recombinant variant of the subunit B. As a result of the work, we have created a new strain of E. coli 42eLTB – the producer of the recombinant subunit B of the thermolabile toxin E. coli. The producing capacity of the obtained strain is 480 mg with 1 culture liquid liter, which exceeds the already known strains 1.37 times.
About the Authors
I. S. KazlouskiBelarus
Kazlouski Illia S., Researcher
2, Kuprevich Str., 220141, Minsk
A. I. Zinchenko
Belarus
Zinchenko Anatoliy I, Corresponding Member, D. Sc. (Biology), Professor, Head of the Laboratory
2, Kuprevich Str., 220141, Minsk
A. V. Solovyeva
Belarus
Solovyeva Anastasiya V, Junior researcher
28, Briket Str., 220063, Minsk
O. N. Novikova
Belarus
Novikova Oksana N, Ph. D. (Veterinary Medicine), Leading researcher
28, Briket Str., 220063, Minsk
Yu. V. Lomako
Belarus
Lomako Yuri V, Ph. D. (Veterinary Medicine), Director
28, Briket Str., 220063, Minsk
References
1. Sospedra I., Simone C., Soriano J. M., Manes J., Ferranti P., Ritieni A. Characterization of heat-labile toxin-subunit B from Escherichia coli by liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Food and Chemical Toxicology, 2012, vol. 50, no. 11, pp. 3886–3891. https://doi.org/10.1016/j.fct.2012.08.014
2. Duan Q., Xia P., Nandre R., Zhang W., Zhu G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2019, vol. 9, art. 292. https://doi.org/10.3389/fcimb.2019.00292
3. Loc N. H., Tung N. V., Kim P. T. A., Yang M. S. Expression of Escherichia coli heat-labile enterotoxin B subunit in Centella (Centella asiatica (L.) Urban) via biolistic transformation. Current Pharmaceutical Biotechnology, 2020, vol. 21, no. 10, pp. 973–979. https://doi.org/10.2174/1389201021666200226094150
4. Hur J., Ozgur A., He Y. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks. Journal of Biomedical Semantics, 2017, vol. 8, no. 1, art. 12. https://doi.org/10.1186/s13326-017-0122-4
5. Su F., Xu L., Xue Y., Li J., Fu Y., Yu B., Wang S., Yuan X. Th1-biased immunoadjuvant effect of the recombinant B subunit of an Escherichia coli heat-labile enterotoxin on an inactivated porcine reproductive and respiratory syndrome virus antigen via intranasal immunization in mice. Journal of Veterinary Medical Science, 2019, vol. 81, no. 10, pp. 1475–1484. https://doi.org/10.1292/jvms.19-0057
6. Hur J., Tao C., He Y. A 2018 workshop: vaccine and drug ontology studies (VDOS 2018). BMC Bioinformatics, 2019, vol. 20, no. 21, art. 705. https://doi.org/10.1186/s12859-019-3191-9
7. Quan J., Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE, 2009, vol. 4, no. 7, art. e6441. https://doi.org/10.1371/journal.pone.0006441
8. Kaushik H., Deshmukh S. K., Solanki A. K., Bhatia B., Tiwari A., Garg L. C. Immunization with recombinant fusion of LTB and linear epitope (40–62) of epsilon toxin elicits protective immune response against the epsilon toxin of Clostridium perfringens type D. AMB Express, 2019, vol. 9, no. 1, pp. 105–116. https://doi.org/10.1186/s13568-019-0824-3
9. Cao S., Zhang Y., Liu F., Wang Q., Zhang Q., Liu Q., Li C., Liang M., Li D. Secretory Expression and Purification of Recombinant Escherichia coli Heat-Labile Enterotoxin B Subunit and its Applications on Intranasal Vaccination of Hantavirus. Molecular Biotechnology, 2009, vol. 41, no. 2, pp. 91–98. https://doi.org/10.1007/s12033-008-9101-4
10. Kozuka S., Yasuda Y., Isaka M., Masaki N., Taniguchi T., Matano K., Moriyama A., Ohkuma K., Goto N., Udaka S., Tochikudo K. Effcient extracellular production of recombinant Escherichia coli heat-labile enterotoxin B subunit by using the expression/secretion system of Bacillus brevis and its mucosal immunoadjuvanticity. Vaccine, 2000, vol. 18, no. 17, pp. 1730–1737. https://doi.org/10.1016/s0264-410x(99)00547-2