Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Design solutions for gravity-independent heat pipes

https://doi.org/10.29235/1561-8323-2021-65-2-234-240

Abstract

Heat pipes with mesh wicks were designed (working liquid – water, envelope – copper tube). Wicks from the mesh of various weaves (plain, twill, leno and looped) with improved hydrophilic properties and secondary capillary structure were developed. Heat pipes are gravity-independent, adapted to work in various conditions of orientation and localization, and provide the transfer of high heat flux powers (up to 25 W/cm2 ). The peculiar properties of the developed heat pipes in contrast to the traditional heat pipes (with powder wicks) are: high performance characteristics, resistance to deep freezing; vibrostability.

About the Authors

O. L. Voitik
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Voitik Olga L., Senior researcher

15, P. Brovka Str., 220072, Minsk



K. I. Delendik
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Delendik Kirill I., Senior researcher

15, P. Brovka Str., 220072, Minsk



N. V. Kolyago
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Kolyago Natalia V., Leading researcher

15, P. Brovka Str., 220072, Minsk



References

1. Cengel Y. A. Heat transfer: a practical approach. McGraw-Hill, 2003. 932 p.

2. Delendik K. I., Kolyago N. V., Penyazkov O. G., Voitik O. L. Development of heat pipes for cooling thermally stressed electronics elements. Journal of Engineering Physics and Thermophysics, 2019, vol. 92, no. 6, pp. 1529–1536. https://doi.org/10.1007/s10891-019-02073-8

3. Blet N., Lips S., Sartre V. Heats pipes for temperature homogenization: A literature review. Applied Thermal Engineering, 2017, vol. 118, pp. 490–509. https://doi.org/10.1016/j.applthermaleng.2017.03.009

4. Chan C. W., Siqueiros E., Ling-Chin J., Royapoor M., Roskilly A. P. Heat utilisation technologies: A critical review of heat pipes. Renewable and Sustainable Energy Reviews, 2015, vol. 50, pp. 615–627. https://doi.org/10.1016/j.rser.2015.05.028

5. Jouhara H., Chauhan A., Nannou T., Almahmoud S., Delpech B., Wrobel L. C. Heat pipe based systems – Advances and applications. Energy, 2017, vol. 128, no. 1, pp. 729–754. https://doi.org/10.1016/j.energy.2017.04.028

6. Chen Х., Ye H., Fan X., Ren T., Zhang G. A review of small heat pipes for electronics. Applied Thermal Engineering, 2016, vol. 96, pp. 1–17. https://doi.org/10.1016/j.applthermaleng.2015.11.048

7. Delendik K., Voitik O., Kolyago N., Penyazkov O. While the smartphone is on… current trends in smartphone cooling. Nauka i innovacii = Science and Innovations, 2020, no. 4, pp. 58–67 (in Russian).

8. Williams R. R., Harris D. K. Cross-plane and in-plane porous properties measurements of thin metal felts: applications in heat pipes. Experimental Thermal and Fluid Science, 2003, vol. 27, no. 3, pp. 227–235. https://doi.org/10.1016/s0894-1777(02)00223-6


Review

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)