Transient absorption spectral dynamics of hybrid associates of CdS quantum dots and methylene blue dye
https://doi.org/10.29235/1561-8323-2021-65-3-281-289
Abstract
The transient absorption spectra dynamics for hybrid associates of colloidal CdS quantum dots, passivated by thioglycolic acid (CdS/TGA QDs), and methylene blue cationic dye molecules (MB+) were studied by femtosecond spectroscopy. It was established that one of the main channels of relaxation of the CdS/TGA QDs excitation energy in hybrid associates based on CdS/TGA QDs and MB+ is a fast energy transfer to the reduced forms of MB+ (MBOH•, MB•) that are formed still at the synthesis stage of samples. This channel strongly competes with the resonant energy transfer from the centers of radiative recombination in quantum dots to MB+. Therefore, for hybrid associates based on QDs/TGA and methylene blue, there is no any noticeable signal of the transient absorption corresponding to the triplet state of MB+ dye, which is then known to be actively involved in charge transfer.
About the Author
S. A. TikhomirovBelarus
Tikhomirov Sergey A. – Corresponding Member, D. Sc. (Physics and Mathematics), Chief researcher
68-2, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus
References
1. Chou K., Dennis A. Forster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors, 2015, vol. 15, no. 6, pp. 13288–13325. https://doi.org/10.3390/s150613288
2. Harris R. D., Homan S. B., Kodaimati M., He C., Nepomnyashchii A. B., Swenson N. K., Lian S., Calzada R., Weiss E. A. Electronic processes within quantum dot-molecule complexes. Chemical Reviews, 2016, vol. 116, no. 21, pp. 12865–12919. https://doi.org/10.1021/acs.chemrev.6b00102
3. Smirnov M. S., Ovchinnikov O. V., Dedikova A. O., Shapiro B. I., Vitukhnovsky A. G., Shatskikh T. S. Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye. Journal of Luminescence, 2016, vol. 176, pp. 77–85. https://doi.org/10.1016/j.jlumin.2016.03.015
4. Rakovich A., Savateeva D., Rakovich T., Donegan J. F., Rakovich Y. P., Kelly V., Lesnyak V., Eychmüller A. CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Research Letters, 2010, vol. 5, no. 4, pp. 753–760. https://doi.org/10.1007/s11671-010-9553-x
5. Smirnov M. S., Buganov O. V., Tikhomirov S. A., Ovchinnikov O. V. Photoexcitation dynamics in hybrid associates of Ag2S quantum dots with methylene blue. Journal of Luminescence, 2021, vol. 232, art. 117794. https://doi.org/10.1016/j.jlumin.2020.117794
6. Huang J., Huang Z., Yang Y., Zhu H., Lian T. Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue. Journal of the American Chemical Society, 2010, vol. 132, no. 13, pp. 4858–4864. https://doi.org/10.1021/ja100106z
7. Dworak L., Roth S., Scheffer M. P., Frangakis A. S., Wachtveitl J. A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue. Nanoscale, 2018, vol. 10, no. 4, pp. 2162–2169. https://doi.org/10.1039/c7nr08287h
8. Yang Y., Rodríguez-Cordoba W., Lian T. Ultrafast Charge Separation and Recombination Dynamics in Lead Sulfide Quantum Dot-Methylene Blue Complexes Probed by Electron and Hole Intraband Transitions. Journal of the American Chemical Society, 2011, vol. 133, no. 24, pp. 9246–9249. https://doi.org/10.1021/ja2033348
9. Yang Y., Lian T. Multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QDs. Coordination Chemistry Reviews, 2014, vol. 263–264, pp. 229–238. https://doi.org/10.1016/j.ccr.2013.11.013
10. Severino D., Junqueira H. C., Gugliotti M., Gabrielli D. S., Baptista M. S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochemistry and Photobiology, 2007, vol. 77, no. 5, pp. 459–468. https://doi.org/10.1562/0031-8655(2003)0770459ioncio2.0.co2
11. Gak V., Nadtochenko V., Kiwi J. Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1998, vol. 116, no. 1, pp. 57–62. https://doi.org/10.1016/s1010-6030(98)00230-5
12. Smirnov M. S., Buganov O. V., Tikhomirov S. A., Ovchinnikov O. V., Shabunya-Klyachkovskaya E. V., Grevtseva I. G., Kondratenko T. S. Decay of electronic excitations in colloidal thioglycolic acid (TGA)-capped CdS/ZnS quantum dots. Journal of Nanoparticle Research, 2017, vol. 19, no. 11, art. 376. https://doi.org/10.1007/s11051-017-4067-4
13. Stsiapura V. I., Maskevich A. A., Tikhomirov S. A., Buganov O. V. Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents. Journal of Physical Chemistry A, 2010, vol. 114, no. 32, pp. 8345−8350. https://doi.org/10.1021/jp105186z
14. Lewis G. N., Goldschmid O., Magel T. T., Bigeleisen J. Dimeric and other forms of methylene blue: Absorption and fluorescence of the pure monomer1. Journal of American Chemical Society, 1943, vol. 65, no. 6, pp. 1150–1154. http://doi.org/10.1021/ja01246a037
15. Nekrasov A. D., Shapiro B. I. Effect of multiply charged paramagnetic metal cations on J-aggregation of thiacyanine dyes. High Energy Chemistry, 2011, vol. 45, no. 2, pp. 133–139. https://doi.org/10.1134/s001814391102010x
16. Basu S., Panigrahi S., Praharaj S., Ghosh S. K., Pande S., Jana S., Pal A., Pal T. Solvent effect on the electronic spectra of azine dyes under alkaline condition. Journal of Physical Chemistry A, 2007, vol. 111, no. 4, pp. 578–583. http://doi.org/10.1021/jp065740u