Using high refractive index nanoparticles to inhibition of spontaneous emission
https://doi.org/10.29235/1561-8323-2021-65-5-546-551
Abstract
The article discusses the issues of inhibition of spontaneous emission of molecules by using silicon spherical nanoparticles and dimers made from them. It is shown that at different wavelengths of the visible spectral range, the value of the total spontaneous transitions rate in a molecule located at an optimal distance with respect to the structure with silicon nanospheres and at an optimal size of the structure can be up to 5–10 times lower than the transition rate in the case when the nanoparticles are absent.
Keywords
About the Authors
D. V. GuzatovBelarus
Guzatov Dmitry V. – D. Sc. (Physics and Mathematics),
Assistant рrofessor, Professor of the Department
22, Ozheshko Str., 230023, Grodno
S. V. Gaponenko
Belarus
Gaponenko Sergey V. – Academician, D. Sc. (Physics and Mathematics), Professor, Chief researcher
68-2, Nezavisimosti Ave., 220072, Minsk
References
1. Purcell E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev, 1946, vol. 69, pp. 681.
2. Gaponenko S. V., Demir H. V. Applied Nanophotonics. Cambridge, 2018. 434 p. https://doi.org/10.1017/9781316535868
3. Bykov V. P. Spontaneous emission from a medium with a band spectrum. Soviet Journal of Quantum Electronics, 1975, vol. 4, no. 7, pp. 861–871. https://doi.org/10.1070/qe1975v004n07abeh009654
4. Yablonovitch E. Photonic band-gap structures. Journal of the Optical Society of America B, 1993, vol. 10, no. 2, pp. 283–295. https://doi.org/10.1364/JOSAB.10.000283
5. Hadad Y., Engheta N. Possibility for inhibited spontaneous emission in electromagnetically open parity-timesymmetric guiding structures. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 11, pp. 5576–5581. https://doi.org/10.1073/pnas.1914279117
6. Dulkeith E., Morteani A. C., Niedereichholz T., Klar T. A., Feldmann J., Levi S. A., van Veggel F. C. J. M., Reinhoudt D. N., Möller M., Gittins D. I. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Physical Review Letters, 2002, vol. 89, no. 20, pp. 203002-1–203002-4. https://doi.org/10.1103/physrevlett.89.203002
7. Gaponenko S. V., Adam P.-M., Guzatov D. V., Muravitskaya A. O. Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics. Scientific Reports, 2019, vol. 9, pp. 7138-1–7138-14. https://doi.org/10.1038/s41598-019-43545-4
8. Krasnok A. E., Denisyuk A. I., Belov P. A., Simovski C. R., Kivshar Yu. S., Maksymov I. S., Miroshnichenko A. E. Optical nanoantennas. Physics-Uspekhi, 2013, vol. 56, no. 6, pp. 539–564. https://doi.org/10.3367/ufne.0183.201306a.0561
9. Palik E. D., ed. Handbook of Optical Constants of Solids I. New York, 1985. 805 p.
10. Bidault S., Mivelle M., Bonod N. Dielectric nanoantennas to manipulate solid state light emission. Journal of Applied Physics, 2019, vol. 126, no. 9, pp. 094104-1–094104-16. https://doi.org/10.1063/1.5108641
11. Novotny L., Hecht B. Principles of Nano-Optics. Cambridge, 2012. 565 p. https://doi.org/10.1017/cbo9780511794193
12. Klimov V. V., Letokhov V. S. Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Physics, 2005, vol. 15, no. 1, pp. 61–73.
13. Guzatov D. V., Klimov V. V. Spontaneous emission of a chiral molecule near a cluster of two chiral spherical particles. Quantum Electronics, 2015, vol. 45, no. 3, pp. 250–257. https://doi.org/10.1070/qe2015v045n03abeh015386
14. Krasnok A., Caldarola M., Bonod N., Alu A. Spectroscopy and biosensing with optically resonant dielectric nanostructures. Advanced Optical Materials, 2018, vol. 6, no. 5, pp. 1701094-1–1701094-22. https://doi.org/10.1002/adom.201701094
15. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, 2010. 465 p. https://doi.org/10.1017/cbo9780511750502