Synthesis of N-pentofuranosyl oxazolines and amides though the selective transformations of D-sugar acetonides
https://doi.org/10.29235/1561-8323-2021-65-5-558-567
Abstract
The method for synthesis of N-pentofuranosyl oxazolines was developed from the protected 1,2-O-acetonides of D-xylofuranose, -ribofuranose, and -arabinofuranose using boron trifluoride diethyl etherate, acetonitrile, and potassium hydrogen difluoride. A possible mechanism of the catalyzed reaction of acylated acetonides with acetonitrile in the presence of Lewis acid was considered in terms of the activation and cleavage of the 1,3-dioxalane part of the xylose derivative fol- lowed by the conversions of intermediates to α-isooxazoline. The hydrolysis reactions of N-α-glycosyl oxazolines were stud- ied in the acidic and neutral conditions. N-α-xylofuranosyl acetamide derivatives were prepared in high yields as a result of selective hydrolysis of protected α-xylofuranosyl isooxazolines in the neutral conditions.
About the Authors
G. G. SivetsBelarus
Sivets Grigorii G. – D. Sc. (Chemistry), Head of the Laboratory
5/2, Kuprevich Str., 220141, Minsk
A. V. Sivets
Belarus
Sivets Aleksey V. – Postgraduate student
5/2, Kuprevich Str., 220141, Minsk
References
1. Gilbert, D. N. Aminoglycosides / D. N. Gilbert // Principles and Practice of Infectious Diseases / G. L. Mandech, G. L. Bennett, R. Dolin, eds; 6th ed. – New York, 2005. – P. 328–356.
2. Noris, P. Pyranose N-glycosyl amines: emerging targets with diverse biological potential / P. Noris // Curr. Top. Med. Chem. – 2008. – Vol. 8, N 2. – P. 101–113. https://doi.org/10.2174/156802608783378837
3. Spiro, R. G. Glycoproteins / R. G. Spiro // Ann. Rev. Biochem. – 1970. – Vol. 39, N 1. – P. 599–638. https://doi.org/10.1146/annurev.bi.39.070170.003123
4. Witczak, Z. J. Recent Examples of Novel Synthetic Approaches to Diverse Amino Sugars / Z. J. Witczak, R. Bielski // Carbohydr. Chem. – 2016. – Vol. 42. – P. 344−368. https://doi.org/10.1039/9781782626657-00344
5. Somsak, L. Glucose derived inhibitors of glycogen phosphorylase / L. Somsak // Comptes Rendus Chimie. – 2011. – Vol. 14, N 2–3. – P. 211–223. https://doi.org/10.1016/j.crci.2010.09.004
6. Synthesis of N-(β-D-glucopyranosyl)monoamides of dicarboxylic acids as potential inhibitors of glycogen phosphorylase / K. Czifrak [et al.] // Carbohyd. Res. – 2006. – Vol. 341, N 8. – P. 947–956. https://doi.org/10.1016/j.carres.2006.03.002
7. Nisic, F. Stereoselective synthesis of N-galactofuranosyl amides / F. Nisic, A. Bernardi // Carbohyd. Res. – 2011. – Vol. 346, N 4. – P. 465–471. https://doi.org/10.1016/j.carres.2010.12.020
8. Larsen, K. Acid-catalysed rearrangement of glycosyl trichloroacetimidates: a novel rote to glycosylamines / K. Larsen, C. E. Olsen, M. S. Motawia // Carbohyd. Res. – 2008. – Vol. 343, N 2. – P. 383–387. https://doi.org/10.1016/j.carres.2007.10.019
9. Zheng, J. Direct synthesis of β-N-glycosides by the reductive glycosylation of azides with protected and native carbohydrate donors / J. Zheng, K. B. Urkalan, S. B. Herzon // Angew. Chem. Int. Ed. – 2013. – Vol. 52, N 23. – P. 6068–6071. https://doi.org/10.1002/anie.201301264
10. Nisic, F. Stereoselective synthesis of glycosyl amides by traceless Staudinger ligation of unprotected glycosyl azides / F. Nisic, A. Bernardi // Carbohyd. Res. – 2008. – Vol. 343, N 10–11. – P. 1636–1643. https://doi.org/10.1016/j.carres.2008.04.023
11. Monovalent and bivalent N-fucosyl amides as high affinity ligands for pseudomonas aeruginosa PA-II lectin / M. Andreini [et al.] // Carbohydr. Res. – 2010. – Vol. 345, N 10. – P. 1400–1407. https://doi.org/10.1016/j.carres.2010.03.012
12. Synthesis of sugar oxazolines by intramolecular Ritter-like reaction of D-fructose precursors / J. L. J. Blanco [et al.] // Synlett. – 2004. – N 12. – P. 2230–2232. https://doi.org/10.1055/s-2004-830891
13. Stereospecific synthesis of β-D-xylofuranosides of adenine and guanine / N. E. Poopeiko [et al.] // Synthesis. – 1985. – Vol. 1985, N 6/7. – P. 605–609. https://doi.org/10.1055/s-1985-34138
14. 1,2-Di-O-acetyl-5-O-benzoyl-3-deoxy-3-fluro-D-xylofuranose. A versatile precursor for the synthesis of 3-deoxy-3-fluro-D-xylofuranosyl nucleosides as antiviral agents / G. Gosselin [et al.] // Carbohydr. Res. – 1993. – Vol. 249, N 1. – P. 1–17. https://doi.org/10.1016/0008-6215(93)84056-c
15. Ritter, J. J. A new reaction of nitriles. I. Amides from alkenes and mononitriles / J. J. Ritter, P. P. Minieri // J. Am. Chem. Soc. – 1948. – Vol. 70, N 12. – P. 4045–4048. https://doi.org/10.1021/ja01192a022