1. Fowler, J. D. Biochemical, Structural, and Physiological Characterization of Terminal Deoxynucleotidyl Transferase / J. D. Fowler, Z. Suo // Chem. Rev. - 2006. - Vol. 106, N 6. - P. 2092-2110. https://doi.org/10.1021/cr040445w
2. Motea, E. A. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase / E. A. Motea, A. J. Berdis // Biochim. Biophys. Acta Prot. Proteom. - 2010. - Vol. 1804, N 5. - P. 1151-1166. https://doi.org/10.1016/j.bbapap.2009.06.030
3. High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation / L. Tang [et al.] // Angew. Chem. Int. Ed. - 2017. - Vol. 56, N 24. - P. 6778-6782. https://doi.org/10.1002/anie.201700991
4. Gavrieli, Y. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation / Y. Gavrieli, Y. Sherman, S. A. Ben-Sasson // J. Cell Biol. - 1992. - Vol. 119, N 3. - P. 493-501. https://doi.org/10.1083/jcb.119.3.493
5. Terminal Deoxynucleotidyl Transferase and Rolling Circle Amplification Induced G-triplex Formation: A Label-free Fluorescent Strategy for DNA Methyltransferase Activity Assay / H. Que [et al.] // Sens. Act. B: Chem. - 2019. - Vol. 291. - P. 394-400. https://doi.org/10.1016/j.snb.2019.04.091
6. Enzymatic fabrication of DNA nanostructures: Extension of a self-assembled oligonucleotide monolayer on gold arrays / D. C. Chow [et al.] // J. Am. Chem. Soc. - 2005. - Vol. 127, N 41. - P. 14122-14123. https://doi.org/10.1021/ja052491z
7. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT) in E. coli / W. J. Kuan [et al.] // Biochem. Ins. - 2010. - Vol. 3. - P. 41-46. https://doi.org/10.4137/bci.s5123
8. Expression and Processing of Recombinant Human Terminal Transferase in Baculovirus System / L. M. Chang [et al.] // J. Biol. Chem. - 1998. - Vol. 263, N 25. - P. 12509-12513. https://doi.org/10.1016/s0021-9258(18)37784-6
9. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro / Y. Wang [et al.] // Nuc. Acids Res. - 2004. - Vol. 32, N 3. - P. 1197-1207. https://doi.org/10.1093/nar/gkh271
10. Flynn, R. L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians / R. L. Flynn, L. Zou // Crit. Rev. Biochem. Mol. Biol. - 2010. - Vol. 45, N 4. - P. 266-275. https://doi.org/10.3109/10409238.2010.488216
11. Weiner, J. H. The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication / J. H. Weiner, L. L. Bertsch, A. Kornberg // J. Biol. Chem. - 1975. - Vol. 250, N 6. - P. 1972-1980. https://doi.org/10.1016/s0021-9258(19)41671-2
12. Kim, D. E. Protein structure prediction and analysis using the Robetta server / D. E. Kim, D. Chivian, D. Baker // Nuc. Acids Res. - 2004. - Vol. 32. - P. 526-531. https://doi.org/10.1093/nar/gkh468
13. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model / S. Wang [et al.] // PLoS Comp. Biol. - 2017. - Vol. 13, N 1. - P. 1-34. https://doi.org/10.1371/journal.pcbi.1005324
14. Sun, S. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity / S. Sun, L. Geng, Y. Shamoo // Prot. Struct. Func. Bioinf. - 2006. - Vol. 65, N 1. - P. 231-238. https://doi.org/10.1002/prot.21088
15. Chisty, L. T. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA / L. T. Chisty, D. Quaglia, M. R. Webb // PLOSE ONE. - 2018. - Vol. 13, N 2. - P. 1-20. https://doi.org/10.1371/journal.pone.0193272
16. UCSF ChimeraX: Structure visualization for researchers, educators, and developers / E. F. Pettersen [et al.] // Protein Sci. - 2021. - Vol. 30, N 1. - P. 70-82. https://doi.org/10.1002/pro.3943
17. Benkert, P. Toward the estimation of the absolute quality of individual protein structure models / P. Benkert, M. Biasini, T. Schwede // Bioinf. - 2011. - Vol. 27, N 3. - P. 343-350. https://doi.org/10.1093/bioinformatics/btq662