Design structure of fusion protein of bovine DNA exotransferase and E. coli SSB protein
https://doi.org/10.29235/1561-8323-2021-65-5-568-575
Abstract
The analysis of the trajectories of molecular dynamics simulation and spatial structures of homologous models of fusion protein with various linkers was performed to understand the effect of the additional DNA-binding domain of the E. coli SSB protein attached to the truncated and native bovine DNA exotransferase on its stability and activity. It is found that the C-terminus of the enzyme is the preferred end for attachment of the E. coli protein, while the stability of the truncated fusion enzyme is higher than the native one. According to molecular dynamics data, introducing linkers between two proteins for the native (GGGGSGGGSGGGGS, GGGSGGGS, and TCT) and truncated (GGSGGGSGG, GGGGGG, GTGSGT, and 5xGGGGS) forms of the enzyme not only improves its stability, but also increases the mutual mobility of DNA-affinity domains.
Keywords
About the Authors
A. B. SachankaBelarus
Sachanka Antos B. – Junior researcher, Postgraduate student
5/2, Kuprevich Str., 220141, Minsk
Ya. U. Dzichenka
Belarus
Dzichenka Yaraslau U. – Ph. D. (Chemistry), Senior researcher
5/2, Kuprevich Str., 220141, Minsk
A. V. Yantsevich
Belarus
Yantsevich Aliaksei V. – Ph. D. (Chemistry), Head of the Laboratory
5/2, Kuprevich Str., 220141, Minsk
S. A. Usanov
Belarus
Usanov Sergei A. – Corresponding Member, D. Sc. (Chemistry), Professor
5/2, Kuprevich Str., 220141, Minsk
References
1. Fowler, J. D. Biochemical, Structural, and Physiological Characterization of Terminal Deoxynucleotidyl Transferase / J. D. Fowler, Z. Suo // Chem. Rev. – 2006. – Vol. 106, N 6. – P. 2092–2110. https://doi.org/10.1021/cr040445w
2. Motea, E. A. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase / E. A. Motea, A. J. Berdis // Biochim. Biophys. Acta Prot. Proteom. – 2010. – Vol. 1804, N 5. – P. 1151–1166. https://doi.org/10.1016/j.bbapap.2009.06.030
3. High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation / L. Tang [et al.] // Angew. Chem. Int. Ed. – 2017. – Vol. 56, N 24. – P. 6778–6782. https://doi.org/10.1002/anie.201700991
4. Gavrieli, Y. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation / Y. Gavrieli, Y. Sherman, S. A. Ben-Sasson // J. Cell Biol. – 1992. – Vol. 119, N 3. – P. 493–501. https://doi.org/10.1083/jcb.119.3.493
5. Terminal Deoxynucleotidyl Transferase and Rolling Circle Amplification Induced G-triplex Formation: A Label-free Fluorescent Strategy for DNA Methyltransferase Activity Assay / H. Que [et al.] // Sens. Act. B: Chem. – 2019. – Vol. 291. – P. 394–400. https://doi.org/10.1016/j.snb.2019.04.091
6. Enzymatic fabrication of DNA nanostructures: Extension of a self-assembled oligonucleotide monolayer on gold arrays / D. C. Chow [et al.] // J. Am. Chem. Soc. – 2005. – Vol. 127, N 41. – P. 14122–14123. https://doi.org/10.1021/ja052491z
7. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT) in E. coli / W. J. Kuan [et al.] // Biochem. Ins. – 2010. – Vol. 3. – P. 41–46. https://doi.org/10.4137/bci.s5123
8. Expression and Processing of Recombinant Human Terminal Transferase in Baculovirus System / L. M. Chang [et al.] // J. Biol. Chem. – 1998. – Vol. 263, N 25. – P. 12509–12513. https://doi.org/10.1016/s0021-9258(18)37784-6
9. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro / Y. Wang [et al.] // Nuc. Acids Res. – 2004. – Vol. 32, N 3. – P. 1197–1207. https://doi.org/10.1093/nar/gkh271
10. Flynn, R. L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians / R. L. Flynn, L. Zou // Crit. Rev. Biochem. Mol. Biol. – 2010. – Vol. 45, N 4. – P. 266–275. https://doi.org/10.3109/10409238.2010.488216
11. Weiner, J. H. The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication / J. H. Weiner, L. L. Bertsch, A. Kornberg // J. Biol. Chem. – 1975. – Vol. 250, N 6. – P. 1972–1980. https://doi.org/10.1016/s0021-9258(19)41671-2
12. Kim, D. E. Protein structure prediction and analysis using the Robetta server / D. E. Kim, D. Chivian, D. Baker // Nuc. Acids Res. – 2004. – Vol. 32. – P. 526–531. https://doi.org/10.1093/nar/gkh468
13. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model / S. Wang [et al.] // PLoS Comp. Biol. – 2017. – Vol. 13, N 1. – P. 1–34. https://doi.org/10.1371/journal.pcbi.1005324
14. Sun, S. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity / S. Sun, L. Geng, Y. Shamoo // Prot. Struct. Func. Bioinf. – 2006. – Vol. 65, N 1. – P. 231–238. https://doi.org/10.1002/prot.21088
15. Chisty, L. T. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA / L. T. Chisty, D. Quaglia, M. R. Webb // PLOSE ONE. – 2018. – Vol. 13, N 2. – P. 1–20. https://doi.org/10.1371/journal.pone.0193272
16. UCSF ChimeraX: Structure visualization for researchers, educators, and developers / E. F. Pettersen [et al.] // Protein Sci. – 2021. – Vol. 30, N 1. – P. 70–82. https://doi.org/10.1002/pro.3943
17. Benkert, P. Toward the estimation of the absolute quality of individual protein structure models / P. Benkert, M. Biasini, T. Schwede // Bioinf. – 2011. – Vol. 27, N 3. – P. 343–350. https://doi.org/10.1093/bioinformatics/btq662