Obtaining alumi- nosilicate nanotubes from natural kaolin
https://doi.org/10.29235/1561-8323-2021-65-5-576-581
Abstract
The analysis of the trajectories of molecular dynamics On the basis of natural kaolin from the “Dedovka” deposit (Gomel region), aluminosilicate nanotubes 800– 1100 nm in length and 50–60 nm in diameter were obtained for the first time. The synthesis was carried out according to the developed method under relatively mild conditions at a temperature of 60–66 °C, atmospheric pressure, and a low (7.0 mL/g) amount of a reagent (methanol) required for their formation.
About the Authors
V. E. AgabekovBelarus
Agabekov Vladimir E. – Academician, D. Sc. (Che mistry), Professor, Head of the Department
36, Skorina Str., 220141, Minsk
A. Yu. Sidorenko
Belarus
Sidorenko Alexander Yu. – Ph. D. (Chemistry), Head of the Laboratory
36, Skorina Str., 220141, Minsk
T. V. Sviridova
Belarus
Sviridova Tatiana V. – D. Sc. (Chemistry), Associate professor
4, Nezavisimosti Ave., 220030, Minsk
Yu. M. Kurban
Belarus
Kurban Yulia M. – Junior researcher
36, Skorina Str., 220141, Minsk
D. V. Sviridov
Belarus
Sviridov Dmitry V. – Corresponding Member, D. Sc. (Chemistry), Professor, Dean
4, Nezavisimosti Ave., 220030, Minsk
References
1. Massaro, M. Past, present and future perspectives on halloysite clay minerals / M. Massaro, R. Noto, S. Riela // Molecules. – 2020. – Vol. 25, N 20. – Art. 4863. https://doi.org/10.3390/molecules25204863
2. Mahajan, A. Halloysite nanotubes based heterogeneous solid acid catalysts / A. Mahajan, P. Gupta // New Journal of Chemistry. – 2020. – Vol. 44, N 30. – P. 12897–12908. https://doi.org/10.1039/d0nj02846k
3. Highly selective Prins reaction over acid-modified halloysite nanotubes for synthesis of isopulegol-derived 2H-chromene compounds / A. Yu. Sidorenko [et al.] // Journal of Catalysis. – 2019. – Vol. 374. – P. 360–377. https://doi.org/10.1016/j.jcat.2019.05.009
4. From platy kaolinite to aluminosilicate nanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation / P. Yuan [et al.] // Applied Clay Science. – 2013. – Vol. 83–84. – P. 68–76. https://doi.org/10.1016/j.clay.2013.08.027
5. A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes / X. Li [et al.] // Applied Clay Science. – 2019. – Vol. 168. – P. 421–427. https://doi.org/10.1016/j.clay.2018.12.014
6. Liu, Q. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls / Q. Liu, X. Li, H. Cheng // Applied Clay Science. – 2016. – Vol. 124–125. – P. 175–182. https://doi.org/10.1016/j.clay.2016.02.015
7. An efficient method to prepare aluminosilicate nanoscrolls under mild conditions / S. Zhang [et al.] // ChemComm. – 2021. – Vol. 57, N 6. – P. 789–792. https://doi.org/10.1039/d0cc07291e
8. Qu, H. Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor / H. Qu, S. He, H. Su // Scientific reports. – 2019. – Vol. 9, N 1. – P. 1–8. https://doi.org/10.1038/s41598-019-44806-y
9. Komarov V. S. Adsorption-structural, physicochemical and catalytic properties of clays of Belarus. Minsk, 1970. 318 p. (in Russian).
10. Komarov V. S. Synthesis and regulation of the porous structure of adsorbents. Minsk, 2003. 276 p. (in Russian).
11. Komarov V. S., Ratko A. I. Adsorbents: obtaining, structure, properties. Minsk, 2009. 256 p. (in Russian).
12. Dyatlova E. M., Sergievich O. A., Bobkova N. M. Investigation of structural features of natural and enriched kaolins of the Republic of Belarus by IR-spectroscopy. Vestsi Natsyianal’nai akademii navuk Belarusi. Seryya khimichnykh navuk=Proceedings of the National Academy of Sciences of Belarus, Сhemical series, 2018, vol. 54, no. 1, pp. 96–102 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-1-96-102