Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Determining the human chronological age from the blood samples on the basis of the analysis of CpG-dinucleotides methylation

https://doi.org/10.29235/1561-8323-2021-65-5-582-591

Abstract

Based on the bioinformatic and statistical analysis of the GEO-projects to determine the genome-wide profile of human DNA methylation, a list of 27 CpG dinucleotides with a high predictive potential was formed to create models for prediction of the human age from blood samples. The methylation level was determined for 245 samples of individuals from the Republic of Belarus. The correlation coefficients R were calculated, and the mathematical models for determining the age of an individual were constructed. The average accuracy value of the age prediction from blood samples using 12 CpG-dinucleotides was 3.4 years (for men – 3.3, for women – 3.5). The results obtained will be used as a basis for development of calculators for predicting the age of an individual based on the biological traces for forensic experts.

About the Authors

V. A. Lemesh
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Lemesh Valentina A. – Ph. D. (Biology), Assistant professor, Head of the Laboratory

27, Akademicheskaya Str., 220072, Minsk



V. N. Kipen
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Kipen Viachaslau N. – Ph. D. (Biology), Leading Researcher

27, Akademicheskaya Str., 220072, Minsk



M. V. Bahdanava
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Bahdanava Marina V. – Ph. D. (Biology), Leading researcher

27, Akademicheskaya Str., 220072, Minsk



A. A. Burakova
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Burakova Arina A. – Junior researcher

27, Akademicheskaya Str., 220072, Minsk



A. A. Bulgak
Scientific and Practical Centre «Cardiology»
Belarus

Bulgak Alexander G. – Corresponding Member, D. Sc.
(Medicine), Professor, Chief researcher

110B, Roza Lyuksemburg Str., 220036, Minsk



A. V. Bayda
Белорусская медицинская академия последипломного образования
Belarus

Bayda Alexander V. – Ph. D. (Medicine), Head of the Laboratory

3, P. Brovka Str., 220013, Minsk



V. V. Zotova
Scientific and Practical Centre «Cardiology»
Belarus

Zotova Volga V. – Ph. D. (Medicine), Cardiologist, Researcher

110B, Roza Lyuksemburg Str., 220036, Minsk



V. I. Dobysh
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Dobysh Volga I. – Junior researcher

27, Akademicheskaya Str., 220072, Minsk



References

1. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond / P. A. Jones // Nature Reviews Genetics. – 2012. – Vol. 13, N 7. – P. 484–492. https://doi.org/10.1038/nrg3230

2. Antequera, F. High levels of De Novo methylation and altered chromatin structure at CpG islands in cell lines / F. Antequera, J. Boyes, A. Bird // Cell. – 1990. – Vol. 62, N 3. – P. 503–514. https://doi.org/10.1016/0092-8674(90)90015-7

3. Park, S. K. Lessons learned from gene expression profile studies of aging and caloric restriction / S. K. Park, T. A. Prolla // Ageing Research Reviews. – 2005. – Vol. 4, N 1. – P. 55–65. https://doi.org/10.1016/j.arr.2004.09.003

4. Altuhov Y. P. Intraspecific genetic diversity: monitoring and conservation principles. Genetika [Russian Journal of Genetics], 1995, vol. 31, no. 10, pp. 1333–1357 (in Russian).

5. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function / H. S. Jang [et al.] // Genes. – 2017. – Vol. 8, N 6. – Art. 148. https://doi.org/10.3390/genes8060148

6. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects / J. L. McClay [et al.] // Human Molecular Genetics. – 2014. – Vol. 23, N 5. – P. 1175–1185. https://doi.org/10.1093/hmg/ddt511

7. Horvath, S. DNA methylation age of human tissues and cell types / S. Horvath // Genome Biology. – 2013. – Vol. 14, N 10. – P. 1–19. https://doi.org/10.1186/gb-2013-14-10-r115

8. Kilchevskij A., Mosse I., Shapturenko M., Burakova A. Genetics – forensic examination of Belarus. Nauka i Innovacii = The Science and Innovations, 2020, no. 10 (212), pp. 22–28 (in Russian).

9. Genome-wide methylation profiles reveal quantitative views of human aging rates / G. Hannum [et al.] // Mol. Cell. – 2013. – Vol. 49, N 2. – P. 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

10. DNA Methylation Analysis: Choosing the Right Method / S. Kurdyukov, M. Bullock // Biology (Basel). – 2016. – Vol. 5, N 1. – P. e1–e21. https://doi.org/10.3390/biology5010003

11. Impact of genetic ancestry on chronological age prediction using DNA methylation analysis / J. Fleckhaus [et al.] // Forensic Science International: Genetics Supplement Series. – 2017. – Vol. 6. – P. e399–e400. https://doi.org/10.1016/j.fsigss.2017.09.162

12. Donkin, I. Sperm epigenetics and influence of environmental factors / I. Donkin, R. Barres // Mol. Metab. – 2018. – Vol. 14. – P. 1–11. https://doi.org/10.1016/j.molmet.2018.02.006

13. Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression / J. Naue [et al.] // Forensic Sci. Int. Genet. – 2017. – Vol. 31. – P. 19–28. https://doi.org/10.1016/j.fsigen.2017.07.015

14. Kipen V. N., Bahdanava M. V., Burakova A. A., Dobysh O. I., Zotova O. V., Koroleva T. S., Bulgak A. G., Baida A. V., Bruskin S. A., Lemesh V. A. Determination of minimum sample size for the prediction of human chronological age. Molekulyarnaya i prikladnaya genetika [Molecular and Applied Genetics], 2021, vol. 30, pp. 39–48 (in Russian).

15. DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers / S. R. Hong [et al.] // Forensic Sci. Int. Genet. – 2017. – Vol. 29. – P. 118–125. https://doi.org/10.1016/j.fsigen.2017.04.006

16. Tracking age-correlated DNA methylation markers in the young / A. Freire-Aradas [et al.] // Forensic Sci. Int. Genet. – 2018. – Vol. 36. – P. 50–59. https://doi.org/10.1016/j.fsigen.2018.06.011

17. Identification and evaluation of age-correlated DNA methylation markers for forensic use / J. L. Park [et al.] // Forensic Sci. Int. Genet. – 2016. – Vol. 23. – P. 64–70. https://doi.org/10.1016/j.fsigen.2016.03.005

18. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing / A. Vidaki [et al.] // Forensic Sci. Int. Genet. – 2017. – Vol. 28. – P. 225–236. https://doi.org/10.1016/j.fsigen.2017.02.009 19. Development of a forensically useful age prediction method based on DNA methylation analysis / R. Zbiec-Piekarska [et al.] // Forensic Sci. Int. Genet. – 2015. – Vol. 17. – P. 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

19. Development of a forensically useful age prediction method based on DNA methylation analysis / R. Zbiec-Piekarska [et al.] // Forensic Sci. Int. Genet. – 2015. – Vol. 17. – P. 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001


Review

Views: 567


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)