Biomarkers of inflammation and cytokine storm: a relationship with the production levels of virus-specific IgG isotype antibodies to SARS-CoV-2 N-protein in COVID-19 present and vaccinated persons
https://doi.org/10.29235/1561-8323-2021-65-5-592-600
Abstract
COVID-19 has become a planetary emergency which is seriously threatening human health. Comparative studies can shed light on the molecular mechanisms of the formation of humoral antiviral immunity in persons who have undergone the disease and have been vaccinated against the SARS-CoV-2 virus. Serum levels of biomarkers of inflammation and cytokine storm (procalcitonin, sCD14, sLBP, sTREM1, IL-6, IL-8, IL-10, sWnt5a, TNFα and TNFβ) were determined by enzyme immunoassay. We studied the relationship between the content of biomarkers in blood serum with low and high concentrations of antiviral antibodies, indirect indicators of which are the values of the positivity coefficient (CP). A significant increase in the serum levels of sTREM1, IL-6, and procalcitonin was found in persons with a high CP level after infection. A significant increase in IL-6 and PCT was revealed in persons vaccinated with the Sputnik V vaccine, both with a low level of CP and with a high one. In vaccinated individuals with a low CP level, a significant increase in the sTREM1 content was also observed. It has been shown that the content of sCD14 (presepsin) is significantly lower in vaccinated individuals, both with low and high CP, compared with donors. When studying the correlations between CP and serum biomarkers in vaccinated individuals, a weak inverse correlation was found for sLBP (r = –0.465) and IL-6 (r = –0.437), as well as an average inverse correlation for sTREM1 (r = –0.508).
About the Authors
L. P. TitovBelarus
Titov Leonid P. – Corresponding Member, D. Sc. (Medicine), Professor, Head of the Laboratory
23, Filimonov Str., 220114, Minsk
T. V. Amvrosieva
Belarus
Amvrosieva Tamara V. – D. Sc. (Medicine), Professor, Head of the Laboratory
23, Filimonov Str., 220114, Minsk
M. O. Trusevich
Belarus
Trusevich Margarita O. – Researcher
23, Filimonov Str., 220114, Minsk
I. V. Belskaya
Belarus
Belskaya Inna V. – Junior Researcher
23, Filimonov Str., 220114, Minsk
References
1. Titov L. P. Virology: Glossary. Minsk, 2009. 448 p. (in Russian).
2. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G. F., Tan W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 2020, vol. 382, no. 8, pp. 727–733. https://doi.org/10.1056/nejmoa2001017
3. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, no. 10223, pp. 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
4. Wen F., Yu H., Guo J., Li Y., Luo K., Huang S. Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. Journal of Infection, 2020, vol. 80, no. 6, pp. 671–693. https://doi.org/10.1016/j.jinf.2020.02.027
5. Kharchenko E. Р. The Coronavirus SARS-Cov-2: the Characteristics of Structural Proteins, Contagiousness, and Possible Immune Collisions. Epidemiology and Vaccinal Prevention, 2020, vol. 19, no. 2, pp. 13–30 (in Russian). https://doi.org/10.31631/2073-3046-2020-19-2-13-30
6. Bianchi M., Benvenuto D., Giovanetti M., Angeletti S., Ciccozzi M., Pascarella S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? BioMed Research International, 2020, vol. 2020, art. 4389089. https://doi.org/10.1155/2020/4389089
7. Titov L. P. Genetics and virulence of viruses. Problemy bakteriologii i immunologii: materialy nauchnoi konferencii [Problems of bacteriology and immunology: materials scientific conference]. Minsk, 2005, pp. 106–115 (in Russian).
8. Titov L. P., Karpov I. A. Antiviral immunity: molecular and cellular mechanisms, patterns of development and immunopathology. Medicinskij zhurnal = Medical Journal, 2007, no. 1, pp. 4–14 (in Russian).
9. Özçürümez M. K., Ambrosch A., Frey O., Haselmann V., Holdenrieder S., Kiehntopf M., Neumaier M., Walter M., Wenzel F., Wölfel R., Renz H. SARS-CoV-2 antibody testing – questions to be asked. Journal of Allergy and Clinical Immunology, 2020, vol. 146, no. 1, pp. 35–43. https://doi.org/10.1016/j.jaci.2020.05.020
10. Poh C. M., Carissimo G., Wang B., Amrun S. N., Lee C., Chee R., Fong S.-W., Yeo N., Lee W.-H., Torres-Ruesta A., Leo Y.-S., Chen M., Tan S.-Y., Chai L., Kalimuddin S., Kheng S., Thien S.-Y., Young B. E., Lye D. C., Hanson B. J., Wang C.-I., Renia L., Ng L. F. P. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nature Communications, 2020, vol. 11, no. 1, pp. 2806. https://doi.org/10.1038/s41467-020-16638-2
11. Pollán M., Pérez-Gómez B., Pastor-Barriuso R., Oteo J., Hernán M. A., Pérez-Olmeda M., Sanmartín J. L., FernándezGarcía A., Cruz I., de Larrea N. F., Molina M., Rodríguez-Cabrera F., Martín M., Merino-Amador P., Paniagua J. L., MuñozMontalvo J. F., Blanco F., Yotti R. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet, 2020, vol. 396, no. 10250, pp. 535–544. https://doi.org/10.1016/S0140-6736(20)31483-5
12. Nien H. C., Hsu S.-J., Su T.-H., Yang P.-J., Sheu J.-C., Wang J.-T., Chow L.-P., Chen C.-L., Kao J.-H., Yang W.-S. High Serum Lipopolysaccharide-Binding Protein Level in Chronic Hepatitis C Viral Infection is Reduced by Anti-Viral Treatments. PLoS One, 2017, vol. 12, no. 1, art. e0170028. https://doi.org/10.1371/journal.pone.0170028