1. The 2017 terahertz science and technology roadmap / S. S. Dhillon [et al.] // J. Phys. D: Appl. Phys. - 2017. - Vol. 50, N 4. - Art. 043001 (1-49). https://doi.org/10.1088/1361-6463/50/4/043001
2. Hartmann, R. R. Terahertz science and technology of carbon nanomaterials / R. R. Hartmann, J. Kono, M. E. Portnoi // Nanotechnology. - 2014. - Vol. 25, N 32. - Art. 322001 (1-16). https://doi.org/10.1088/0957-4484/25/32/322001
3. Batrakov, K. Graphene layered systems as a terahertz source with tuned frequency / K. Batrakov, S. Maksimenko // Phys. Rev. B. - 2017. - Vol. 95, N 20. - Art. 205408 (1-8). https://doi.org/10.1103/physrevb.95.205408
4. Terahertz and infrared detectors based on graphene structures / V. Ryzhii [et al.] // Infrared Phys. And Technology. - 2011. - Vol. 54, N 3. - P. 302-305. https://doi.org/10.1016/j.infrared.2010.12.034
5. Graphene field-effect transistors as room-temperature terahertz detectors / L. Vicarelli [et al.] // Nature Materials. - 2012. - Vol. 11, N 10. - P. 865-871. https://doi.org/10.1038/nmat3417
6. Maffucci, A. A new mechanism for THz detection based on the tunneling effect in bi-layer graphene nanoribbons / A. Maffucci // Appl. Sci. - 2015. - Vol. 5, N 4. - P. 1102-1116. https://doi.org/10.3390/app5041102
7. Maffucci, A. Carbon-based terahertz resonant antennas / A. Maffucci, S. Maksimenko // Fundamental and Applied Nanoelectromagnetics II. - Dordrtecht, 2019. - P. 175-200. https://doi.org/10.1007/978-94-024-1687-9_10
8. Tunable terahertz plasmonic sensor based on graphene/insulator stacks / Y. Huang [et al.] // IEEE Photonics Journal. - 2017. - Vol. 9, N 1. - Art. 5900210 (1-10). https://doi.org/10.1109/jphot.2017.2656242
9. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes / M. V. Shuba [et al.] // Phys. Rev. B. - 2012. - Vol. 85, N 16. - Art. 165435 (1-6). https://doi.org/10.1103/physrevb.85.165435
10. Graphene THz Detector based on Plasmon Resonances and Interband Transitions / A. Maffucci [et al.] // XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). - 2021. - P. 1-3. https://doi.org/10.23919/ursigass51995.2021.9560421
11. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions and surface wave propagation / G. Y. Slepyan [et al.] // Phys. Rev. B. - 1999. - Vol. 60, N 24. - P. 17136-17149. https://doi.org/10.1103/physrevb.60.17136
12. Hartmann, R. R. Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons / R. R. Hartmann, V. A. Saroka, M. E. Portnoi // J. Appl. Phys. - 2019. - Vol. 125, N 15. - Art. 151607 (1-9). https://doi.org/10.1063/1.5080009
13. Tight-binding energy dispersions of armchair-edge graphene nanostrips / D. Gunlycke, C. T. White // Phys. Rev. B. - 2008. - Vol. 77, N 11. - Art. 115116 (1-6). https://doi.org/10.1103/physrevb.77.115116
14. Hidden correlation between absorption peaks in achiral carbon nanotubes and nanoribbons / V. A. Saroka [et al.] // J. Saudi. Chem. Soc. - 2018. - Vol. 22, N 8. - P. 985-992. https://doi.org/10.1016/j.jscs.2018.03.001
15. Maffucci, A. Number of conducting channels for armchair and zig-zag graphene nanoribbon / A. Maffucci, G. Miano // IEEE Trans. on Nanotechn. - 2013. - Vol. 12, N. 5. - P. 817-823. https://doi.org/10.1109/tnano.2013.2274901