Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Middle- and far-infrared detector based on the plane collection of graphene strips

https://doi.org/10.29235/1561-8323-2021-65-6-661-667

Abstract

A concept of a middle- and far-infrared detector has been proposed. The detector is built as a planar collection of parallel graphene strips of different length and width. The feature of the detector scheme is the concurrent utilization of two different detection mechanisms: excitation in the given frequency range of low-frequency interband transitions inherent in armchair graphene strips and antenna resonances of strongly slowed-down surface waves (plasmon polaritons). It has been shown that matching these two resonances results in the essential detector signal amplification, thus providing an alternative way how to solve the problem of the low efficiency of resonant graphene antennas. An approach is proposed to analyze the design of such detectors, as well as to discuss the ways of tuning the both mechanisms.

About the Authors

S. A. Maksimenko
Institute for Nuclear Problems of the Belarusian State University
Belarus

Maksimenko Sergey A. – D . S c. ( Physics a nd M athematics), Professor, Director

11, Bobruiskaya Str., 220006, Minsk, Republic of Belarus



A. Maffucci
University of Cassino and Southern Lazio
Italy

Maffucci Antonio – Professor, Ph. D.

Via G. Di Biasio 43 03043 Cassino – FR, Italy



M. E. Portnoi
University of Exeter, Exeter
United Kingdom

Portnoi Misha – Ph. D., Professor

Physics Building, Stocker Road, Exeter EX4 4QL, United Kingdom



V. A. Saroka
Norwegian University of Science and Technology
Norway

Saroka Vasil А. – Ph. D.

Høgskoleringen 5, 7034 Trondheim, Norway



G. Y. Slepyan
Tel Aviv University
Israel

Slepyan Gregory – D. Sc. (Physics and Mathematics), Professor

Tel Aviv 69978, Israel



References

1. Dhillon S. S., Vitiello M. S., Linfield E. H., Davies A. G., Hoffmann M. C., Booske J., Paoloni C., Gensch M., Weightman P., Williams G. P., Castro-Camus E., Cumming D. R. S., Simoens F., Escorcia-Carranza I., Grant J., Lucyszyn S., Kuwata-Gonokami M., Konishi K., Koch M., Schmuttenmaer C. A., Cocker T. L., Huber R., Markelz A. G., Taylor Z. D., Wallace V. P., Zeitler J A., Sibik J., Korter T. M., Ellison B., Rea S., Goldsmith P., Cooper K. B., Appleby R., Pardo D., Huggard P. G., Krozer V., Shams H., Fice M., Renaud C., Seeds A., Stöhr A., Naftaly M., Ridler N., Clarke R., Cunningham J. E., Johnston M. B. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 2017, vol. 50, no. 4, art. 043001 (1–49). https://doi.org/10.1088/1361-6463/50/4/043001

2. Hartmann R. R., Kono J., Portnoi M. E. Terahertz science and technology of carbon nanomaterials. Nanotechnology, 2014, vol. 25, no. 32, art. 322001 (1–16). https://doi.org/10.1088/0957-4484/25/32/322001

3. Batrakov K., Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B, 2017, vol. 95, no. 20, art. 205408 (1–8). https://doi.org/10.1103/physrevb.95.205408

4. Ryzhii V., Ryzhii M., Ryabova N., Mitin V., Otsuji T. Terahertz and infrared detectors based on graphene structures. Infrared Physics & Technology, 2011, vol. 54, no. 3, pp. 302–305. https://doi.org/10.1016/j.infrared.2010.12.034

5. Vicarelli L., Vitiello M. S., Coquillat D., Lombardo A., Ferrari A. C., Knap W., Polini M., Pellegrini V., Tredicucci A. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 2012, vol. 11, no. 10, pp. 865–871. https://doi.org/10.1038/nmat3417

6. Maffucci A. A new mechanism for THz detection based on the tunneling effect in bi-layer graphene nanoribbons. Applied Sciences, 2015, vol. 5, no. 4, pp. 1102–1116. https://doi.org/10.3390/app5041102

7. Maffucci A., Maksimenko S. Carbon-based terahertz resonant antennas. Fundamental and applied nano-electromagnetics II, Dordrtecht, Springer, 2019, pp. 175–199. https://doi.org/10.1007/978-94-024-1687-9_10

8. Huang Y., Zhong S., Yao H., Cui D. Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks. IEEE Photonics Journal, 2017, vol. 9, no. 1, art. 5900210 (1–10). https://doi.org/10.1109/jphot.2017.2656242

9. Shuba M. V., Paddubskaya A. G., Plyushch A. O., Kuzhir P. P., Slepyan G. Ya., Maksimenko S. A., Ksenevich V. K., Buka P., Seliuta D., Kasalynas I., Macutkevic J., Valusis G., Thomsen C., Lakhtakia A. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Physical Review B, 2012, vol. 85, no. 16, art. 165435 (1–6). https://doi.org/10.1103/physrevb.85.165435

10. Maffucci A., Maksimenko S. A., Portnoi M. E., Saroka V. A., Slepyan G. Y. A Graphene THz Detector based on Plasmon Resonances and Interband Transitions. XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2021, pp. 1–3. https://doi.org/10.23919/ursigass51995.2021.9560421

11. Slepyan G. Ya., Maksimenko S. A., Lakhtakia A., Yevtushenko O. M., Gusakov A. V. Electrodynamics of carbon nanotubes: Dynamics conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B, 1999, vol. 60, no. 24, p. 17136–17149. https://doi.org/10.1103/physrevb.60.17136

12. Hartmann R. R., Saroka V. A., Portnoi M. E. Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons. Journal of Applied Physics, 2019, vol. 125, no. 15, art. 151607 (1–9). https://doi.org/10.1063/1.5080009

13. Gunlycke D., White C. T. Tight-binding energy dispersions of armchair-edge graphene nanostrips. Physical Review B, 2008, vol. 77, no. 11, art. 115116 (1–6). https://doi.org/10.1103/physrevb.77.115116

14. Saroka V. A., Pushkarchuk A. L., Kuten S. A., Portnoi M. E. Hidden correlation between absorption peaks in achiral carbon nanotubes and nanoribbons. Journal of Saudi Chemical Society, 2018, vol. 22, no. 8, pp. 985–992. https://doi.org/10.1016/j.jscs.2018.03.001

15. Maffucci A., Miano G. Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects. IEEE Transactions on Nanotechnology, 2013, vol. 12, no. 5, pp. 817–823. https://doi.org/10.1109/tnano.2013.2274901


Review

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)