Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Click chemistry and molecular modeling methods in computer-aided design and identification of potential HIV-1 inhibitors

https://doi.org/10.29235/1561-8323-2021-65-6-680-691

Abstract

An integrated approach including the click chemistry methodology, molecular docking, quantum mechanics, and molecular dynamics was used to perform the computer-aided design of potential HIV-1 inhibitors able to block the membrane- proximal external region (MPER) of HIV-1 gp41 that plays an important role in the fusion of the viral and host cell membranes. Evaluation of the binding efficiency of the designed compounds to the HIV-1 MPER peptide was performed using the methods of molecular modeling, resulting in nine chemical compounds that exhibit the high-affinity binding to this functionally important site of the trimeric “spike” of the viral envelope. The data obtained indicate that the identified compounds are promising for the development of novel antiviral drugs, HIV fusion inhibitors blocking the early stages of HIV infection.

About the Authors

A. M. Andrianov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Andrianov Alexander M. – D. S c. ( Chemistry), Chief researcher

5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus



A. M. Yushkevich
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Yushkevich Artsemi M. – Trainee of Junior researcher

6, Surganov Str., 220012, Minsk, Republic of Belarus



I. P. Bosko
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Bosko Ivan P. – Junior researcher

6, Surganov Str., 220012, Minsk, Republic of Belarus



A. D. Karpenko
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Karpenko Anna D. – Postgraduate student

6, Surganov Str., 220012, Minsk, Republic of Belarus



Yu. V. Kornoushenko
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kornoushenko Yuri V. – Ph. D. (Chemistry), Senior researcher

5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus



K. V. Furs
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Furs Konstantin V. – Software engineer

6, Surganov Str., 220012, Minsk, Republic of Belarus



A. V. Tuzikov
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Tuzikov Alexander V. – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, General Director

6, Surganov Str., 220012, Minsk, Republic of Belarus



References

1. Wang H.-B., Mo Q.-H., Yang Z. HIV vaccine research: The challenge and the way forward. Journal of Immunology Research, 2015, vol. 2015, art. 503978. https://doi.org/10.1155/2015/503978

2. Mann J. K., Ndung’u T. HIV-1 vaccine immunogen design strategies. Virology Journal, 2015, vol. 12, no. 1, art. 3. https://doi.org/10.1186/s12985-014-0221-0

3. Corti D., Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annual Review of Immunology, 2013, vol. 31, no. 1, pp. 705–742. https://doi.org/10.1146/annurev-immunol-032712-095916

4. Arts E. J., Hazuda D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine, 2012, vol. 2, no. 4, art. 007161. https://doi.org/10.1101/cshperspect.a007161

5. Kumari G., Singh R. K. Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario. HIV & AIDS Review, 2012, vol. 11, no. 1, pp. 5–14. https://doi.org/10.1016/j.hivar.2012.02.003

6. MacArthur R. D., Novak R. M. Maraviroc: The first of a new class of antiretroviral agents. Clinical Infectious Diseases, 2008, vol. 47, no. 2, pp. 236–241. https://doi.org/10.1086/589289

7. Matthews T., Salgo M., Greenberg M., Chung J., DeMasi R., Bolognesi D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nature Reviews Drug Discovery, 2004, vol. 3, no. 3, pp. 215–225. https://doi.org/10.1038/nrd1331

8. Kwong P. D., Mascola J. R., Nabel G. J. The changing face of HIV vaccine research. Journal of the International AIDS Society, 2012, vol. 15, no. 2, art. 17407. https://doi.org/10.7448/ias.15.2.17407

9. Huang J., Ofek G., Laub L., Louder M. K., Doria-Rose N. A., Longo N. S., Imamichi H., Bailer R. T., Chakrabarti B., Sharma S. K., Alam S. M., Wang T., Yang Y., Zhang B., Migueles S. A., Wyatt R., Haynes B. F., Kwong P. D., Mascola J. R., Connors M. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature, 2012, vol. 491, no. 7424, pp. 406–412. https://doi.org/10.1038/nature11544

10. Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 2001, vol. 40, no. 11, pp. 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::aid-anie2004%3E3.0.co;2-5

11. Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, vol. 46, no. 1–3, pp. 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

12. Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 2015, vol. 10, no. 5, pp. 449–461. https://doi.org/10.1517/17460441.2015.1032936

13. Sulimov A. V., Kutov D. C., Katkova E. V., Sulimov V. B. Combined docking with classical force field and quantum chemical semiempirical method PM7. Advanced in Bioinformatics, 2017, vol. 2017, pp. 16. https://doi.org/10.1155/2017/7167691

14. Salzwedel K., West J. T., Hunter E. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. Journal of Virology, 1999, vol. 73, no. 3, pp. 2469–2480. https://doi.org/10.1128/jvi.73.3.2469-2480.1999

15. Shen C., Hu Y., Wang Z., Zhang X., Zhong H., Wang G., Yao X., Xu L., Cao D., Hou T. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Briefings in Bioinformatics, 2021, vol. 22, no. 1, pp. 497514. https://doi.org/10.1093/bib/bbz173


Review

Views: 645


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)