Analysis of the cellular composition of the native auto-transplantation mixture used for plastics of bone tissue defects
https://doi.org/10.29235/1561-8323-2021-65-6-715-723
Abstract
The cell composition of native transplant autosmes (NTA) used for bone plastics was studied. The histological examination showed the fragments of bone beams with preserved osteoblasts, the foci of myeloid and lymphoid hematopoiesis and the fibrin deposits, which suggested the presence of MMSCs. Immunophenotyping of the NTA cell population revealed a high level of expression of the surface markers CD105, CD73, and CD90 characteristic for MMSC. DNA-flow cytometry of the bone dust confirmed almost complete preservation of graft viability on the 3rd day of culturing (97.7 % of live cells). The data of this study confirm the presence of the osteogenic, osteoinductive, and osteoconductive properties of the bone dust and emphasize the importance of a further study of this-type bone graft for use in surgical interventions.
About the Authors
N. V. ChueshovaBelarus
Chueshova Nataliya V. – Ph. D. (Biology), Head of the Department
4, Fedyuninsky Str., 246007, Gomel, Republic of Belarus
I. A. Cheshik
Belarus
Cheshik Igor A. – Ph. D. (Medicine), Associate professor, Director
4, Fedyuninsky Str., 246007, Gomel, Republic of Belarus
E. A. Nadyrov
Belarus
Nadyrov Eldar A. – Ph. D. (Medicine), Associate professor
5, Lange Str., 246000, Gomel, Republic of Belarus
V. I. Nikolaev
Belarus
Nikolaev Vladimir I. – Ph. D. (Medicine), Associate professor
5, Lange Str., 246000, Gomel, Republic of Belarus
S. I. Kirilenko
Belarus
Kirilenko Sergey I. – Ph. D. (Medicine), Head of the Department
5, Brother Lizyukov, 246029, Gomel, Republic of Belarus
V. V. Rozhin
Belarus
Rozhin Vladimir V. – traumatologist-orthopedist, neurosurgeon
5, Brother Lizyukov, 246029, Gomel, Republic of Belarus
A. N. Kondrachuk
Belarus
Kondrachuk Аlexey N. – Senior researcher
5, Lange Str., 246000, Gomel, Republic of Belarus
N. S. Serdyuchenko
Belarus
Serdyuchenko Nikolay S. – Corresponding Member, D. Sc. (Medicine), Professor, Academician-Secretary
66, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus
References
1. Predein Y. A., Rerikh V. V. Bone and cellular implants for replacement bone defects. Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education, 2016, no. 6, pp. 132 (in Russian).
2. Deev R. V., Tsupkina N. V., Ivanov D. E., Nikolaenko N. S., Dulaev A. K., Gololobov V. G., Pinaev G. P. The results of the crop transplantation of autogenic brain stromal cells in the region of the regional defect of long tubular bones. Travmatologiya i ortopediya Rossii = Traumatology and Orthopedics of Russia, 2007, no. 2(44), pp. 57–63 (in Russian).
3. Heidari N., John C., Agyare K., Tucker S. A novel method for the salvage of bone dust generated by high-speed burrs in spinal surgery. Annals of The Royal College of Surgeons of England, 2007, vol. 89, no. 5, рр. 533–534. https://doi.org/10.1308/rcsann.2007.89.5.533
4. Patel V. V., Estes S. M., Naar E. M., Lindley E. M., Burger E. Histologic evaluation of high speed burr shavings collected during spinal decompression surgery. Orthopedics, 2009, vol. 32, no. 1, pp. 23. https://doi.org/10.3928/01477447-20090101-17
5. Ekanayake J., Shad A. Use of the novel ANSPACH bone collector for bone autograft in anterior cervical discectomy and cage fusion. Acta Neurochirurgica, 2009, vol. 152, no. 4, pp. 651–653. https://doi.org/10.1007/s00701-009-0513-0
6. Blay A., Tunchel S., Sendyk W. R. Viability of autogenous bone grafts obtained by using bone collectors: histological and microbiological study. Pesquisa Odontologica Brasileira, 2003, vol. 17, no. 3, pp. 234–240. https://doi.org/10.1590/s1517-74912003000300007
7. Santagata M., Tartaro G., Tozzi U., D’Amato S., Prisco R. V. E. Autologous bone graft harvested during implant site preparation: histological study. Plastic and Aesthetic Research, 2014, vol. 1, no. 3, pp. 94–97. https://doi.org/10.4103/2347-9264.143553
8. Eder C., Chavanne A., Meissner J., Bretschneider W., Tuschel A., Becker P., Ogon M. Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill. European Spine Journal, 2011, vol. 20, no. 11, pp. 1791–1795. https://doi.org/10.1007/s00586-011-1736-3
9. Worm P. V., Ferreira N. P., Faria M. B., Ferreira M. P., Kraemer J. L., Collares M. V. M. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes. Surgical Neurology International, 2010, vol. 1, no. 1, pp. 91. https://doi.org/10.4103/2152-7806.74160
10. Kirilenko S. I., Rozhin V. V., Nadyrov E. A., Nikolaev V. I., Mazurenko A. N., Dobysh A. A. Device for bone chips filtration. Ortopediya, travmatologiya i protezirovanie = Orthopedics, traumatology and prosthetics, 2020, no. 2, pp. 75–79 (in Russian). https://doi.org/10.15674/0030-59872020275-79
11. Rozhin V. V., Kirilenko S. I., Nadirov E. A., Nikolaev V. I. Grafts used for spine fusion formation. Problemy zdoroviya i ekologii = Health and Ecology Problems, 2019, no. 2(60), pp. 13–19 (in Russian).
12. Fitzsimmons R. E. B., Mazurek M. S., Soos A., Simmons C. A. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International, 2018, vol. 2018, pp. 1–16. https://doi.org/10.1155/2018/8031718
13. Pittenger M. F. Mesenchymal stem cells from adult bone marrow. Prockop D. J., Phinney D. G., Bunnell B. A., eds. Mesenchymal stem cells: methods and protocol. Humana Press, 2008, pp. 27–44. https://doi.org/10.1007/978-1-60327-169-1_2
14. Kode J., Tanavde V. Mesenchymal stromal cells and their clinical applications. Krishan A., Krishnamurthy H., Totey S., ed. Applications of Flow Cytometry in Stem Cell Research and Tissue Regeneration. Bangalore, 2010, рр. 175–188. https://doi.org/10.1002/9780470631119.ch12
15. Zurochka A. V., Khaidukov S. V., Kudryavcev I. V., Chereshnev V. A. Flow cytometry in medicine and biology. 2nd ed. Ekaterinburg, 2014. 574 р. (in Russian).
16. Warnes G. The multiplexing of assays for the measurement of early stages of apoptosis by polychromatic flow cytometry. Flow cytometry – Select topics. London, 2016, рр. 85–99. https://doi.org/10.5772/60549
17. Baer P. C., Koch B., Hickmann E., Schubert R., Cinatl J., Hauser I. A., Geiger H. Isolation, characterization, differentiation and immunomodulatory capacity of mesenchymal stromal/stem cells from human perirenal adipose tissue. Cells, 2019, vol. 8, no. 11, art. 1346. https://doi.org/10.3390/cells8111346
18. Pulin A. A., Saburina I. N., Repin V. S. Surface markers of human bone marrow multipotent mesenchymal stromal cells. Kletochnaya transplantologiya i tkanevaya inzheneriya [Cell transplantology and tissue engineering], 2008, vol. 3, no. 3, pp. 25–30 (in Russian).
19. Shachpazyan N. K., Astrelina T. A., Yakovleva M. V. Mesenchymal stem cells from various human tissues: biological properties, assessment of quality and safety for clinical use. Kletochnaya transplantologiya i tkanevaya inzheneriya [Cell transplantology and tissue engineering], 2012, vol. 7, no. 1, pp. 23–33.
20. Mafi P., Hindocha S., Mafi R., Griffin M., Khan W. S. Adult Mesenchymal stem cells and cell surface characterization – A systematic review of the literature. Open Orthopaedics Journal, 2011, vol. 5, no. 1, рр. 253–260. https://doi.org/10.2174/1874325001105010253
21. Rylova Yu. V., Buravkova L. B., Zhivotovsky B. D. The effects of cysplatin on human adipose tissue derived mesenchymal stromal cells under different oxygen levels. Annals of the Russian Academy of Medical Sciences, 2016, vol. 71, no. 2, pp. 114–120 (in Russian). https://doi.org/10.15690/vramn614