Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Electric properties of black arsenic

https://doi.org/10.29235/1561-8323-2022-66-1-26-34

Abstract

R(T, B) of the natural black arsenic (b-As) polycrystal was studied. It was shown that the polycrystalline b-As sample contains the b-As phase and also the traces of its oxide, as well as grey arsenic and arsenolite (As2O3). The behavior of the relative magnetoresistance of the b-As crystal was described by the relation MR(B) = bBn + cBm, where the coefficients b and c and the exponents n and m were also affected by the mechanisms of magnetoresistance formation and temperature. At the temperatures below 10 K, MR(B) shows the presence of a competition between negative (with b < 0 and n ≈ 0.5) and positive (with c > 0 and m ≈ 1) contributions. Above 10 K, only the PMR effect was presented. For the PMR effect, at 10 < T < 100 K it is observed that the values of b > 0, n ≈ 1 and c → 0. Above 100 K, it is observed that the values of b, c > 0 and n ≈ 1 and 1.30 < m < 1.47. The observed behavior of the R(T, B) dependences is associated with strong inhomogeneity and/or disorder of the investigated black arsenic crystal.

About the Author

J. A. Fedotova
Research Institute for Nuclear Problems, Belarusian State University
Belarus

Fedotova Julia A. – D. Sc. (Physics and Mathematics), Deputy director.

11, Bobruiskaya Str., 220006, Minsk



References

1. Zhong M. Z., Xia Q. L., Pan L. F., Liu Y. Q., Chen Y. B., Deng H. X., Li J. B., Wei Z. M. Thickness-Dependent Carrier Transport Characteristics of a New 2D Elemental Semiconductor: Black Arsenic. Advanced Functional Materials, 2018, vol. 28, no. 43, art. 1802581. https://doi.org/10.1002/adfm.201802581

2. Wang C., Bai S., Zhao C., Yu W., Yang Y., Chen Y., Niu C.-Y. Arsenic K4 crystal: A new stable direct-gap semiconductor allotrope. Solid State Communications, 2021, vol. 323, art. 114128. https://doi.org/10.1016/j.ssc.2020.114128

3. Yu W. Y., Niu C. Y., Zhu Z. L., Wang X. F., Zhang W. B. Atomically thin binary V–V compound semiconductor: a first-principles study. Journal of Materials Chemistry C, 2016, vol. 4, no. 27, p. 6581–6587. https://doi.org/10.1039/c6tc01505k

4. Stöhr H. Beiträge zur Kenntnis der Allotropie des Arsens. Zeitschrift für anorganische und allgemeine Chemie, 1939, vol. 242, no. 2, pp. 138–144 (in German). https://doi.org/10.1002/zaac.19392420204

5. Seidl M., Balazs G., Scheer M. The Chemistry of Yellow Arsenic. Chemical Reviews, 2019, vol. 119, no. 14, pp. 8406–8434. https://doi.org/10.1021/acs.chemrev.8b00713

6. Shang S., Wang Y., Zhang H., Liu Z.-K. Lattice dynamics and anomalous bonding in rhombohedral As: First-principles supercell method. Physical Review B, 2007, vol. 76, no. 5, art. 052301. https://doi.org/10.1103/physrevb.76.052301

7. Silas P., Yates J. R., Haynes P. D. Density-functional investigation of the rhombohedral to simple-cubic phase transition of arsenic. Physical Review B, 2008, vol. 78, no. 17, art. 174101. https://doi.org/10.1103/physrevb.78.174101

8. Cai X. L., Niu C. Y., He Y. Y., Wang J. J., Zhu Z. L., Zhang L. W., Jia Y. Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations. Physical Chemistry Chemical Physics, 2017, vol. 19, no. 41, pp. 28354–28359. https://doi.org/10.1039/c7cp05277d

9. Kamal C., Ezawa M., Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Physical Review B, 2015, vol. 91, no. 8, art. 085423. https://doi.org/10.1103/physrevb.91.085423

10. Kou L., Ma Y., Tan X., Frauenheim T., Du A., Smith S. Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide. Journal of Physical Chemistry C, 2015, vol. 119, no. 12, pp. 6918–6922. https://doi.org/10.1021/acs.jpcc.5b02096

11. Zhang Z., Xie J., Yang D., Wang Y., Si M., Xue D. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene. Applied Physics Express, 2015, vol. 8, no. 5, art. 055201. https://doi.org/10.7567/apex.8.055201

12. Roisnel T., Rodríquez-Carvajal J. WinPLOTR: a Windows tool for powder diffraction pattern analysis. Materials Science Forum, 2001, vol. 378–381, pp. 118–123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118

13. Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences, 1984. 390 p. https://doi.org/10.1007/978-3-662-02403-4

14. Shik A. Y. Electronic Properties of Inhomogeneous Semiconductors. Electrocomponent Science Monographs, 1995. 152 p.

15. Fedotov A. K., Kharchanka A., Fedotova J., Slabuhо V., Bushinski M., Svito I. Electric Properties of Black Phosphorus Single Crystals. IX International Scientific Conference of Actual Problems of Solid State Physics: Book of abstracs, 2021, vol. 2, pp. 47–51.

16. Altshuler B. L., Aronov A. G., Khmelnitsky D. E. Effects of electron-electron collisions with small energy transfers on quantum localization. Journal of Physics C: Solid State Physics, 1982, vol. 15, art. 7367. https://doi.org/10.1088/0022-3719/15/36/018

17. Pudalov V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. Proceedings of the International School of Physics “Enrico Fermi”, 2004, vol. 157, pp. 335–356. https://doi.org/10.3254/978-1-61499-013-0-335

18. Polyanskaya T. A., Shmartsev Yu. V. Quantum corrections to the conductivity in semiconductors with 2D and 3D electron gas. Fizika i Tekhnika Poluprovodnikov = Semiconductors, 1989, vol. 23, no. 1, pp. 3–32 (in Russian).


Review

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)