Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Some metal binding properties of recombinant human lactoferrin from the milk of transgenic goats

https://doi.org/10.29235/1561-8323-2022-66-1-43-54

Abstract

In this research, the ability of pure recombinant human lactoferrin (rhLF), originated from the milk of transgenic goats, to bind ferric and europium ions has been shown by the methods of spectrophotometry, fluorescent spectroscopy, and inductively coupled plasma mass spectrometry. The apo-form of rhLF and its complexes with Fe3+ or Eu3+ saturated in 76 or 22 %, respectively, were obtained. A method for detection of total or released (“free”) lanthanide at acidic or neutral pH and high or low concentrations of chelating agents by time-resolved fluorescence was proposed.

About the Authors

D. A. Semenov
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Semenov Dmitry A. – Researcher.

5/2, Kuprevich Str., 220141, Minsk



O. S. Kuprienko
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Kuprienko Olga S. – Ph. D. (Chemistry), Senior Researcher.

5/2, Kuprevich Str., 220141, Minsk



I. I. Vashkevich
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Vashkevich Irina I. – Ph. D. (Chemistry), Leading Researcher.

5/2, Kuprevich Str., 220141, Minsk



O. V. Sviridov
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Sviridov Oleg V. – D. Sc. (Chemistry), Head of the Laboratory.

5/2, Kuprevich Str., 220141, Minsk



References

1. Yantsevich A. V., Dzichenka Ya. V., Ivanchik A. V., Shapiro M. A., Trawkina M., Shkel T. V., Gilep A. A., Sergeev G. V., Usanov S. A. Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography. Applied Biochemistry and Microbiology, 2017, vol. 53, no. 2, pp. 173–186. https://doi.org/10.1134/s000368381702017x

2. Permyakov E. A. Metal binding proteins: structure, properties, functions. Moscow, 2012. 544 p. (in Russian).

3. Baker H. M., Baker E. N. Lactoferrin and iron: structural and dynamic aspects of binding and release. BioMetals, 2004, vol. 17, no. 3, pp. 209–216. https://doi.org/10.1023/b:biom.0000027694.40260.70

4. Borzenkova N. V., Balabushevich N. G., Larionova N. I. Lactoferrin: physical and chemical properties, biological functions, delivery systems, pharmaceutical and nutraceutical preparations (review). Biofarmatsevticheskii zhurnal = Biopharmaceutical Journal, 2010, vol. 2, no. 3, pp. 3–19 (in Russian).

5. Metz-Boutigue M.-H., Jollès J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jollès P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. European Journal of Biochemistry, 1984, vol. 145, no. 3, pp. 659–676. https://doi.org/10.1111/j.1432-1033.1984.tb08607.x

6. Baker E. N., Baker H. M. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie, 2009, vol. 91, no. 1, pp. 3–10. https://doi.org/10.1016/j.biochi.2008.05.006

7. Ward P. P., Zhou X., Conneely O. M. Cooperative interactions between the amino- and carboxyl-terminal lobes contribute to the unique iron-binding stability of lactoferrin. Journal of Biological Chemistry. Protein Chemistry and Structure, 1996, vol. 271, no. 22, pp. 12790–12794. https://doi.org/10.1074/jbc.271.22.12790

8. Goldman I. L., Georgieva S. G., Gurskiy Ya. G., Krasnov A. N., Deykin A. V., Popov A. N., Ermolkevich T. G., Budzevich A. I., Chernousov A. D., Sadchikova E. R. Production of human lactoferrin in animal milk. Biochemistry and Cell Biology, 2012, vol. 90, no. 3, pp. 513–519. https://doi.org/10.1139/o11-088

9. Lukashevich V. S., Budzevich A. I., Semak I. V., Kuznetsova V. N., Malyushkova E. V., Pyzh A. E., Novakovskaya S. A., Rudnichenko J. A., Popkov N. A., Ivashkevich O. A., Zalutsky I. V. Production of recombinant human lactoferrin from the milk of goat-producers and its physiological effects. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 1, pp. 72–81 (in Russian).

10. Semenov D. A., Vashkevich I. I., Sviridov O. V. New immunoassay systems based on recombinant human lactoferrin. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 3, pp. 290–302 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-3-290-302

11. Majka G., Śpiewak K., Kurpiewska K., Heczko P., Stochel G., Strus M., Brindell M. A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Analytical and Bioanalytical Chemistry, 2013, vol. 405, no. 15, pp. 5191–5200. https://doi.org/10.1007/s00216-013-6943-9

12. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry, 1967, vol. 6, no. 7, pp. 1948–1954. https://doi.org/10.1021/bi00859a010

13. Nuijens J. H., van Berkel P. H. C., Geerts M. E. J., Hartevelt P. P., de Boer H. A., van Veen H. A., Pieper F. R. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. Journal of Biological Chemistry. Protein Chemistry and Structure, 1997, vol. 272, no. 13, pp. 8802–8807. https://doi.org/10.1074/jbc.272.13.8802

14. Hu F., Pan F., Sawano Y., Makino T., Kakehi Y., Komiyama M., Kawakami H., Tanokura M. Studies of the structure of multiferric ion-bound lactoferrin: a new antianemic edible material. International Dairy Journal, 2008, vol. 18, no. 10–11, pp. 1051–1056. https://doi.org/10.1016/j.idairyj.2008.05.003

15. Luk C. K. Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry, 1971, vol. 10, no. 15, pp. 2838–2843. https://doi.org/10.1021/bi00791a006

16. Abdollahi S., Harris W. R., Riehl J. P. Application of circularly polarized luminescence spectroscopy to Tb(III) and Eu(III) complexes of transferrins. Journal of Physical Chemistry, 1996, vol. 100, no. 5, pp. 1950–1956. https://doi.org/10.1021/jp952044d

17. Rodzik A., Pomastowski P., Sagandykova G. N., Buszewski B. Interactions of whey proteins with metal ions. International Journal of Molecular Sciences, 2020, vol. 21, no. 6, art. 2156. https://doi.org/10.3390/ijms21062156

18. Lehrer S. S. Fluorescence and absorption studies of the binding of copper and iron to transferrin. Journal of Biological Chemistry, 1969, vol. 244, no. 13, pp. 3613–3617. https://doi.org/10.1016/s0021-9258(18)83413-5

19. Horrocks W. D., Sudnick D. R. Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research, 1981, vol. 14, no. 12, pp. 384–392. https://doi.org/10.1021/ar00072a004

20. Hemmilä I., Dakubu S., Mukkala V.-M., Siitari H., Lövgren T. Europium as a label in time-resolved immunofluorometric assays. Analytical Biochemistry, 1984, vol. 137, no. 2, pp. 335–343. https://doi.org/10.1016/0003-2697(84)90095-2

21. Yang B., Li Y. Binding constants for terbium (III) with chicken apoovotransferrin. Chemical Research in Chinese Universities, 2001, vol. 17, no. 1, pp. 6–13.


Review

Views: 467


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)