1. Kosheleva N. E., Kuzminskaya N. Yu., Terskaya E. V. Salinization and solonetzization of urban soils due to the use of deicing agents (by the example of the Western administrative district of Moscow). Inzhenernye izyskaniya [Engineering survey], 2017, no. 6-7, pp. 64-77 (in Russian).
2. Gunde-Cimerman N., Plemenitas A., Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiology Reviews, 2018, vol. 42, no. 3, pp. 353-375. https://doi.org/10.1093/femsre/fuy009
3. Grover M., Ali Sk. Z., Sandhya V., Rasul A., Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 2011, vol. 27, no. 5, pp. 1231-1240. https://doi.org/10.1007/s11274-010-0572-7
4. Maniatis T., Fritsch E., Sambrook G. Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1982. 2230 r.
5. Holtmann G., Bakker E. P., Uozumi N., Bremer E. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. Journal of Bacteriology, 2003, vol. 185, no. 4, pp. 1289-1298. https://doi.org/10.1128/jb.185.4.1289-1298.2003
6. Nau-Wagner G., Opper D., Rolbetzki A., Boch J., Kempf B., Hoffmann T., Bremer E. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine - responsive GbsR repressor. Journal of Bacteriology, 2012, vol. 194, no. 10. pp. 2703-2714. https://doi.org/10.1128/jb.06642-11
7. Hoffmann T., Wensing A., Brosius M., Steil L., Völker U., Bremer E. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. Journal of Bacteriology, 2013, vol. 195, no. 3, pp. 510-522. https://doi.org/10.1128/jb.01505-12
8. Brill J., Hoffmann T., Bleisteiner M., Bremer E. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. Journal of Bacteriology, 2011, vol. 193, no. 19, pp. 5335-5346. https://doi.org/10.1128/jb.05490-11
9. Nascimentoa F. X., Hernándezb A. G., Glick B. R., Rossi M. J. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 2020, vol. 25, art. e00406. https://doi.org/10.1016/j.btre.2019.e00406
10. Heinemann U., Roske Y. Cold-Shock Domains - Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers, 2021, vol. 13, no. 2, art. 190. https://doi.org/10.3390/cancers13020190
11. Wang B., Zhang D., Chu S., Zhi Y., Liu X., Zhou P. Genomic Analysis of Bacillus megaterium NCT-2 Reveals its Genetic Basis for the Bioremediation of Secondary Salinization Soil. International Journal of Genomics, 2020, vol. 2020, pp. 1-11. https://doi.org/10.1155/2020/4109186
12. Shao J., Li Sh., Zhang N., Cui X., Zhou X., Zhang G., Shen Q., Zhang R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial Cell Factories, 2015, vol. 14, art. 130. https://doi.org/10.1186/s12934-015-0323-4
13. Zhou C., Ma Z., Zhu L., Xiao X., Xie Y., Zhu J., Wang J. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 2016, vol. 17, no. 6, art. 976. https://doi.org/10.3390/ijms17060976