Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Study of the influence of ultra disperse powder additives of the NiAl/Al2O3 system on the tribotechnical properties of the frictional material based on copper

https://doi.org/10.29235/1561-8323-2022-66-1-113-121

Abstract

The results on the impact of additives on the ultra-fine composite powder system, obtained by MASVS on the tribotechnical properties of friction material based on tin bronze with 12 % of tin are presented. It is shown that the powder additive in the range of 0.5–2.5 % increased the dynamic friction coefficient from 0.040 to 0.051. The introduction of a 1.5 % composite powder reduced the surface roughness of the counter body from 2.9 to 0.9 μm. The change in the tribotechnical properties is due to the structural changes in tin bronze, the additive particles, the surface layer of the friction material and the counter body.

About the Authors

A. Ph. Ilyushchanka
O.V. Roman Powder Metallurgy Institute
Russian Federation

Ilyushchanka Aliaxander Ph. – Academician, D. Sc. (Engineering), Professor, Director.

41, Platonov Str., 220005, Minsk



A. V. Leshok
O.V. Roman Powder Metallurgy Institute
Russian Federation

Leshok Andrey V. – Ph. D. (Engineering), Senior Researcher.

41, Platonov Str., 220005, Minsk



A. I. Letsko
O.V. Roman Powder Metallurgy Institute
Russian Federation

Letsko Andrey I. – Ph. D. (Engineering), Associate Professor, Head of the Laboratory.

41, Platonov Str., 220005, Minsk



T. I. Pinchuk
O.V. Roman Powder Metallurgy Institute
Russian Federation

Pinchuk Tatyana I. – Researcher.

41, Platonov Str., 220005, Minsk



References

1. Leshok A. V., Dyachkova L. N., Ilyushchenko A. F., Rogovoy A. N., Alekseenko N. A. Influence of copper frictional material composition on structure and tribotechnical properties. Journal of Friction and Wear, 2019, vol. 40, no. 6, pp. 495–500. https://doi.org/10.3103/s1068366619060151

2. Fedorchenko I. M., Pugina L. I. Composite sintered antifriction materials. Kiev, 1980. 404 p. (in Russian).

3. Ilyuschenko A. F. Current developments in powder metallurgy for mechanical engineering. Mekhanika mashin, mekhanizmov i materialov = Mechanics of Machines, Mechanisms and Materials, 2012, vol. 20–21, no. 3–4, pp. 113–120 (in Russian).

4. Fedorchenko I. M., Kryachek V. M., Panaioti I. I. Modern friction materials. Kiev, 1975. 334 p. (in Russian).

5. Kiparisov S. S. Powder metallurgy. Moscow, 1980. 496 p. (in Russian).

6. Kablov E. N. Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviatsionnyye materialy i tekhnologii = Aviation Materials and Technologies, 2012, no. S, pp. 7–17 (in Russian).

7. Kolobov Yu. R., Kablov E. N., Kozlov E. V., Koneva N. A., Povarova K. B., Grabovetskaya G. P., Buntushkin V. P., Bazyleva O. A., Muboyadzhyan S. A., Budinovskii S. A. Structure and properties of intermetallic materials with nanophase hardening. Moscow, 2008. 328 p. (in Russian).

8. Buntushkin V. P., Kaplin Yu. I., Melimevker O. D., Melnikova M. N., Lyuminarskii A. A. Intermetallic alloy – die material for isothermal deformation. Aviatsionnaya promyshlennost’ [Aviation industry], 1981, no. 9, pp. 48–49 (in Russian).

9. Kartavykh A. V., Kaloshkin S. D., Cherdyntsev V. V., Gorshenkov M. V., Sviridova T. A., Borisova Yu. V., Senatov F. S., Maksimkin A. V. Use of microstructured intermetallides in turbine manufacture. Part I. Current state and prospects. Materialovedenie = Materials Science, 2012, no. 5, pp. 3–11 (in Russian).

10. Aristova E. Yu., Belova E. N., Bondarenko Yu. A., Buntushkin V. P., Ginzburg S. S., Kablov E. N., Nefedov V. G., Razumovski I. M. Self-diffusion of nickel over internal interface surfaces in a heat-resistant alloy based on hardly alloyed intermetallide Ni3 Al. Metally = Russian Metallurgy, 1996, no. 3, pp. 113–120 (in Russian).

11. Buntushkin V. P., Bazyleva O. A., Povarova K. B., Kazanskaya N. K. Influence of structure on mechanical properties of Ni3 Al alloyd intermetallide. Metally = Russian Metallurgy, 1995, no. 3, pp. 74–80 (in Russian).

12. Gostishchev V. V., Kim E. D., Ri E. Kh., Khimukhin S. N. Obtaining of complex-alloyed nickel aluminides and complex ligatures by metal oxides’ metallothermy. Tsvetnye metally [Non-ferrous metals], 2017, no. 10, pp. 79–84 (in Russian).

13. Kablov E. N., Buntushkin V. P., Morozova G. I., Bazyleva O. A. Main principles of alloying intermetallide Ni3Al in the creation of high-temperature alloys. Materialovedenie = Materials Science, 1998, no. 7, pp. 13–16 (in Russian).

14. Kablov E. N., Lukin V. I. Intermetallides based on titanium and nickel for products of new technology. Avtomaticheskaya svarka = Automatic welding, 2008, no. 11, pp. 76–82 (in Russian).

15. Ovcharenko V. E., Lapshin O. V., Boyangin E. N., Ramazanov I. S., Chudinov V. A. High-temperature synthesis of the Ni3 Al intermetallic compound under pressure. Russian Journal of Non-Ferrous Metals, 2007, vol. 48, no. 4, pp. 297–302.

16. Itin V. I., Nayborodenko Yu. S. High-Temperature Synthesis of Intermetallic Compounds. Tomsk, 1989. 214 p. (in Russian).

17. Gostishchev V. V., Khimukhin S. N., Teslina M. A., Astapov I. A. Production of alloys based on nickel aluminides by metallothermic reduction of oxides. Voprosy materialovedeniya = Materials Science Issues, 2013, no. 4 (76), pp. 30–34 (in Russian).

18. Shevtsova L. I. Structure and Mechanical Properties of Materials Based on Nickel Aluminide Obtained by the Technology of Spark Plasma Sintering of Powder Mixtures. Novosibirsk, 2015. 200 p. (in Russian).

19. Umanskii A., Polyarus E., Kostenko A., Terent’ev A. The influence of nickel intermetallic coatings content on wear mechanisms in term of high-temperature friction. Problems of Tribology, 2012, vol. 65, no. 3, pp. 123–127 (in Russian).

20. Talako T. L. Powders obtained by mechanically activated self-propagating high-temperature synthesis for heat-resistant, wear-resistant and radio-absorbing gas-thermal coatings. Minsk, 2015. 398 p. (in Russian).

21. Leshok A. V., Ilyushchanka A. P., Dyachkova L. N., Pinchuk T. I. Tribotechnical properties of a copper-based powder friction material with the addition of iron-chromium alloy powder. Journal of Friction and Wear, 2021, vol. 42, no. 1, pp. 1–6. https://doi.org/10.3103/s1068366621010049

22. Shcherbakov I. N., Popov S. V., Ivanov V. V. Synergism effect of the anti-frictional properties and firmness to wear into compositional coatings with positive concentration gradient of the solid component. Mezhdunarodnyi nauchnoissledovatel’skii zhurnal = International Research Journal, 2014, no. 3 (22), pp. 21–22 (in Russian).

23. Ivanov V. V., Shcherbakov I. N. Modeling of the antifrictional properties of gomogeneous compositional covers with taking into consideration the solid component of the counter-body. Izvestiya Vysshikh Uchebnykh Zavedenii. SeveroKavkazskii Region. Tekhnicheskie Nauki = University News. North Caucasian Region. Technical Sciences, 2010, no. 6, pp. 79–82 (in Russian).

24. Ilyushchanka A. Ph., Talako T. L., Leshok A. V., Letsko A. I., Pinchuk T. I. Tribotechnical properties of sintered friction material based on copper with the additives of the ultrafine powder of aluminide of Ti–46Al–8Cr system. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 103–110 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-103-110


Review

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)