Photon density of states effect on Lamb shift in plasmas
https://doi.org/10.29235/1561-8323-2022-66-5-495-500
Abstract
A possible effect of the low photon density of states in plasma on the Lamb shift is analysed. It is found that because of a significant contribution of high-energy virtual photons to the Lamb shift, its modification in plasma does not exceed 1 % with respect to vacuum even at electron concentrations as high as 1022 cm–3. This behavior results from an asymptotic tendency of plasma properties to vacuum ones at an unlimited frequency growth.
About the Authors
D. V. NovitskyBelarus
Novitsky Denis V. – Ph. D. (Physics and Mathematics), Head of the Centre
68, Nezavisimosti Ave., 220072, Minsk
S. V. Gaponenko
Belarus
Gaponenko Sergey V. – Academician, D. Sc. (Physics and Mathematics), Chief Researcher
68, Nezavisimosti Ave., 220072, Minsk
References
1. Kirchain R., Kimerling L. A roadmap for nanophotonics. Nature Photonics, 2007, vol. 1, no. 6, pp. 303–305. https://doi. org/10.1038/nphoton.2007.84
2. Gaponenko S. V., Demir H. V. Applied Nanophotonics. Cambridge, Cambridge University Press, 2018. 450 p. https:// doi.org/10.1017/9781316535868
3. Lakowicz J. R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, vol. 298, no. 1, pp. 1–24. https://doi.org/10.1006/abio.2001.5377
4. Giannini V., Fernández-Domínguez A. I., Sonnefraud Y., Roschuk T., Fernández-García R., Maier S. A. Controlling light localization and light-matter interactions with nanoplasmonics. Small, 2010, vol. 6, no. 22, pp. 2498–2507. https://doi. org/10.1002/smll.201001044
5. Xin H., Namgung B., Lee L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nature Reviews Materials, 2018, vol. 3, no. 8, pp. 228–243. https://doi.org/10.1038/s41578-018-0033-8
6. Bharadwaj P., Deutsch B., Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, vol. 1, no. 3, pp. 438–483. https://doi.org/10.1364/aop.1.000438
7. Mignuzzi S., Vezzoli S., Horsley S. A., Barnes W. L., Maier S. A., Sapienza R. Nanoscale design of the local density of optical states. Nano Letters, 2019, vol. 19, no. 3, pp. 1613–1617. https://doi.org/10.1021/acs.nanolett.8b04515
8. Purcell E. M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, vol. 69, pp. 681.
9. Walther H., Varcoe B. T., Englert B. G., Becker T. Cavity quantum electrodynamics. Reports on Progress in Physics, 2006, vol. 69, no. 5, pp. 1325–1382. https://doi.org/10.1088/0034-4885/69/5/r02
10. Busch K., von Freymann G., Linden S., Mingaleev S. F., Tkeshelashvili L., Wegener M. Periodic nanostructures for photonics. Physics Reports, 2007, vol. 444, no. 3–6, pp. 101–202. https://doi.org/10.1016/j.physrep.2007.02.011
11. Jacob Z., Kim J. Y., Naik G. V., Boltasseva A., Narimanov E. E., Shalaev V. M. Engineering photonic density of states using metamaterials. Applied Physics B, 2010, vol. 100, no. 1, pp. 215–218. https://doi.org/10.1007/s00340-010-4096-5
12. Lamb Jr. W. E., Retherford R. C. Fine structure of the hydrogen atom by a microwave method. Physical Review, 1947, vol. 72, no. 3, pp. 241–243. https://doi.org/10.1103/physrev.72.241
13. Narozhny N. B., Fedotov A. M., Lozovik Yu. E. Dynamical Lamb effect versus dynamical Casimir effect. Physical Review A, 2001, vol. 64, no. 5, art. 053807. https://doi.org/10.1103/physreva.64.053807
14. Zhu S. Y., Yang Y., Chen H., Zheng H., Zubairy M. S. Spontaneous radiation and Lamb shift in three-dimensional photonic crystals. Physical Review Letters, 2000, vol. 84, no. 10, pp. 2136–2139. https://doi.org/10.1103/physrevlett.84.2136
15. Wang X. H., Kivshar Y. S., Gu B. Y. Giant Lamb shift in photonic crystals. Physical Review Letters, 2004, vol. 93, no. 7, art. 073901. https://doi.org/10.1103/physrevlett.93.073901
16. Li Z. Y., Xia Y. Optical photonic band gaps and the Lamb shift. Physical Review B, 2001, vol. 63, no. 12, art. 121305(R). https://doi.org/10.1103/physrevb.63.121305
17. Rybin M. V., Mingaleev S. F., Limonov M. F., Kivshar Yu. S. Purcell effect and Lamb shift as interference phenomena. Scientific Reports, 2016, vol. 6, no. 1, p. 1–9. https://doi.org/10.1038/srep20599
18. Bethe H. A. The electromagnetic shift of energy levels. Physical Review, 1947, vol. 72, no. 4, pp. 339–341. https://doi. org/10.1103/physrev.72.339
19. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010. 465 p. https://doi. org/10.1017/cbo9780511750502
20. Zhukovsky S. V., Gaponenko S. V. Constraints on transmission, dispersion, and density of states in dielectric multilayers and stepwise potential barriers with an arbitrary layer arrangement. Physical Review E, 2008, vol. 77, no. 4, art. 046602. https://doi.org/10.1103/physreve.77.046602
21. Gaponenko S. V., Guzatov D. V., Novitsky D. V. Density of states effects on emission and scattering of photons in plasmas. arXiv preprint, 2021. Available at: https://arxiv.org/abs/2110.10539
22. Barnett S. M., Huttner B., Loudon R. Spontaneous emission in absorbing dielectric media. Physical Review Letters, 1992, vol. 68, no. 25, pp. 3698–3701. https://doi.org/10.1103/physrevlett.68.3698
23. Matloob R. Quantum-electrodynamic level shifts in an absorbing medium. Physical Review A, 2000, vol. 61, no. 6, art. 062103. https://doi.org/10.1103/physreva.61.062103