Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Photon density of states effect on Lamb shift in plasmas

https://doi.org/10.29235/1561-8323-2022-66-5-495-500

Abstract

A possible effect of the low photon density of states in plasma on the Lamb shift is analysed. It is found that because of a significant contribution of high-energy virtual photons to the Lamb shift, its modification in plasma does not exceed 1 % with respect to vacuum even at electron concentrations as high as 1022 cm–3. This behavior results from an asymptotic tendency of plasma properties to vacuum ones at an unlimited frequency growth.

About the Authors

D. V. Novitsky
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Novitsky Denis V. – Ph. D. (Physics and Mathematics), Head of the Centre

68, Nezavisimosti Ave., 220072, Minsk



S. V. Gaponenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Gaponenko Sergey V. – Academician, D. Sc. (Physics and Mathematics), Chief Researcher

68, Nezavisimosti Ave., 220072, Minsk



References

1. Kirchain R., Kimerling L. A roadmap for nanophotonics. Nature Photonics, 2007, vol. 1, no. 6, pp. 303–305. https://doi. org/10.1038/nphoton.2007.84

2. Gaponenko S. V., Demir H. V. Applied Nanophotonics. Cambridge, Cambridge University Press, 2018. 450 p. https:// doi.org/10.1017/9781316535868

3. Lakowicz J. R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, vol. 298, no. 1, pp. 1–24. https://doi.org/10.1006/abio.2001.5377

4. Giannini V., Fernández-Domínguez A. I., Sonnefraud Y., Roschuk T., Fernández-García R., Maier S. A. Controlling light localization and light-matter interactions with nanoplasmonics. Small, 2010, vol. 6, no. 22, pp. 2498–2507. https://doi. org/10.1002/smll.201001044

5. Xin H., Namgung B., Lee L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nature Reviews Materials, 2018, vol. 3, no. 8, pp. 228–243. https://doi.org/10.1038/s41578-018-0033-8

6. Bharadwaj P., Deutsch B., Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, vol. 1, no. 3, pp. 438–483. https://doi.org/10.1364/aop.1.000438

7. Mignuzzi S., Vezzoli S., Horsley S. A., Barnes W. L., Maier S. A., Sapienza R. Nanoscale design of the local density of optical states. Nano Letters, 2019, vol. 19, no. 3, pp. 1613–1617. https://doi.org/10.1021/acs.nanolett.8b04515

8. Purcell E. M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, vol. 69, pp. 681.

9. Walther H., Varcoe B. T., Englert B. G., Becker T. Cavity quantum electrodynamics. Reports on Progress in Physics, 2006, vol. 69, no. 5, pp. 1325–1382. https://doi.org/10.1088/0034-4885/69/5/r02

10. Busch K., von Freymann G., Linden S., Mingaleev S. F., Tkeshelashvili L., Wegener M. Periodic nanostructures for photonics. Physics Reports, 2007, vol. 444, no. 3–6, pp. 101–202. https://doi.org/10.1016/j.physrep.2007.02.011

11. Jacob Z., Kim J. Y., Naik G. V., Boltasseva A., Narimanov E. E., Shalaev V. M. Engineering photonic density of states using metamaterials. Applied Physics B, 2010, vol. 100, no. 1, pp. 215–218. https://doi.org/10.1007/s00340-010-4096-5

12. Lamb Jr. W. E., Retherford R. C. Fine structure of the hydrogen atom by a microwave method. Physical Review, 1947, vol. 72, no. 3, pp. 241–243. https://doi.org/10.1103/physrev.72.241

13. Narozhny N. B., Fedotov A. M., Lozovik Yu. E. Dynamical Lamb effect versus dynamical Casimir effect. Physical Review A, 2001, vol. 64, no. 5, art. 053807. https://doi.org/10.1103/physreva.64.053807

14. Zhu S. Y., Yang Y., Chen H., Zheng H., Zubairy M. S. Spontaneous radiation and Lamb shift in three-dimensional photonic crystals. Physical Review Letters, 2000, vol. 84, no. 10, pp. 2136–2139. https://doi.org/10.1103/physrevlett.84.2136

15. Wang X. H., Kivshar Y. S., Gu B. Y. Giant Lamb shift in photonic crystals. Physical Review Letters, 2004, vol. 93, no. 7, art. 073901. https://doi.org/10.1103/physrevlett.93.073901

16. Li Z. Y., Xia Y. Optical photonic band gaps and the Lamb shift. Physical Review B, 2001, vol. 63, no. 12, art. 121305(R). https://doi.org/10.1103/physrevb.63.121305

17. Rybin M. V., Mingaleev S. F., Limonov M. F., Kivshar Yu. S. Purcell effect and Lamb shift as interference phenomena. Scientific Reports, 2016, vol. 6, no. 1, p. 1–9. https://doi.org/10.1038/srep20599

18. Bethe H. A. The electromagnetic shift of energy levels. Physical Review, 1947, vol. 72, no. 4, pp. 339–341. https://doi. org/10.1103/physrev.72.339

19. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010. 465 p. https://doi. org/10.1017/cbo9780511750502

20. Zhukovsky S. V., Gaponenko S. V. Constraints on transmission, dispersion, and density of states in dielectric multilayers and stepwise potential barriers with an arbitrary layer arrangement. Physical Review E, 2008, vol. 77, no. 4, art. 046602. https://doi.org/10.1103/physreve.77.046602

21. Gaponenko S. V., Guzatov D. V., Novitsky D. V. Density of states effects on emission and scattering of photons in plasmas. arXiv preprint, 2021. Available at: https://arxiv.org/abs/2110.10539

22. Barnett S. M., Huttner B., Loudon R. Spontaneous emission in absorbing dielectric media. Physical Review Letters, 1992, vol. 68, no. 25, pp. 3698–3701. https://doi.org/10.1103/physrevlett.68.3698

23. Matloob R. Quantum-electrodynamic level shifts in an absorbing medium. Physical Review A, 2000, vol. 61, no. 6, art. 062103. https://doi.org/10.1103/physreva.61.062103


Review

Views: 229


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)