1. Uskoković V. Disordering the disorder as the route to a higher order: incoherent crystallization of calcium phosphate through amorphous precursors. Crystal Growth & Design, 2019, vol. 19, no. 8, pp. 4340-4357. https://doi.org/10.1021/acs. cgd.9b00061
2. Lu B. Q., Willhammar T., Sun B. B., Hedin N., Gale J. D., Gebauer D. Introducing the crystalline phase of dicalcium phosphate monohydrate. Nature Communications, 2020, vol. 11, no. 1, pp. 1-8. https://doi.org/10.1038/s41467-020-15333-6
3. Zou Z., Yang X., Albéric M., Heil T., Wang Q., Pokroy B., Politi Y., Bertinetti L. Additives control the stability of amorphous calcium carbonate via two different mechanisms: Surface adsorption versus bulk incorporation. Advanced Functional Materials, 2020, vol. 30, no. 23, art. 2000003. https://doi.org/10.1002/adfm.202000003
4. Cantaert B., Kuo D., Matsumura S., Nishimura T., Sakamoto T., Kato T. Use of amorphous calcium carbonate for the design of new materials. ChemPlusChem, 2017, vol. 82, no. 1, pp. 107-120. https://doi.org/10.1002/cplu.201600457
5. Combes C., Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomaterialia, 2010, vol. 6, no. 9, pp. 3362-3378. https://doi.org/10.1016/j.actbio.2010.02.017
6. Ibsen C. J. S., Chernyshov D., Birkedal H. Apatite formation from amorphous calcium phosphate and mixed amorphous calcium phosphate/amorphous calcium carbonate. Chemistry - A European Journal, 2016, vol. 22, no. 35, pp. 12347-12357. https://doi.org/10.1002/chem.201601280
7. Sakae T., Nakada H., LeGeros J. P. Historical review of biological apatite crystallography. Journal of Hard Tissue Biology, 2015, vol. 24, no. 2, pp. 111-122. https://doi.org/10.2485/jhtb.24.111
8. Dorozhkin S. V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International, 2016, vol. 42, no. 6, pp. 6529-6554. https://doi.org/10.1016/j.ceramint.2016.01.062
9. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Low-temperature formation and identification of biphasic calcium carbonate-phosphates. Zhurnal neorganicheskoj himii = Journal of Inorganic Chemistry, 2022, vol. 67, no. 2, pp. 1-13 (in Russian). https://doi.org/10.31857/S0044457X22600876
10. Glazov I.E., Krut’koV. K.,Musskaya O. N., KulakA.I.Wetsynthesis of carbonated hydroxyapatite.Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 4, pp. 391-399 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-4-391-399
11. Yasar O. F., Liao W.-C., Stevensson B., Edén M. Structural role and spatial distribution of carbonate ions in amorphous calcium phosphate. Journal of Physical Chemistry C, 2021, vol. 125, no. 8, pp. 4675-4693. https://doi.org/10.1021/acs.jpcc.0c10355
12. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Calcium Phosphate Apatites: Wet Formation, Thermal Transformations, Terminology, and Identification. Russian Journal of Inorganic Chemistry, 2022, vol. 67, no. 2, pp. 173-182. https://doi.org/10.1134/s0036023622020048
13. Asta M. P., Fernandez-Martinez A., Alonso J., Charlet L., Findling N., Magnin V., Ruta B., Sprung M., Westermeier F. Nanoscale Ion Dynamics Control on Amorphous Calcium Carbonate Crystallization: Precise Control of Calcite Crystal Sizes. Journal of Physical Chemistry C, 2020, vol. 124, no. 46, pp. 25645-25656. https://doi.org/10.1021/acs.jpcc.0c08670
14. Koga N., Yamane Y., Kimura T. Thermally induced transformations of calcium carbonate polymorphs precipitated selectively in ethanol/water solutions. Thermochimica Acta, 2011, vol. 512, no. 1-2, pp. 13-21. https://doi.org/10.1016/j. tca.2010.08.016
15. Schultz L. N., Andersson M. P., Dalby K. N., Müter D., Okhrimenko D. V., Fordsmand H., Stipp S. L. S. High surface area calcite. Journal of Crystal Growth, 2013, vol. 371, pp. 34-38. https://doi.org/10.1016/j.jcrysgro.2013.01.049