Heterologous expression of diadenylate cyclase in the form of inclusion bodies with enzymatic activity
https://doi.org/10.29235/1561-8323-2022-66-5-509-516
Abstract
Using the DNA recombination technique, a new bacterial strain Escherichia coli DAC-22 was derived, whose cells are able to carry out the heterologous expression of Bacillus thuringiensis diadenylate cyclase – the enzyme catalyzing the reaction of adenosine-5′-triphosphate (ATP) transformation into cyclic 3′,5′-diadenylate (cyclo-di-AMP). To derive the strain, E. coli “Rosetta (DE3) pLysS” cells were originally used as recipients of plasmid pET42a+ with the inserted gene disA encoding diadenylate cyclase of B. thuringiensis. The cells of the recombinant strain are able to produce heterologous diadenylate cyclase localized predominantly (by 90 %) in the fraction of the catalytically active inclusion bodies. The productivity of the new strain with respect to diadenylate cyclase structurally arranged as the inclusion bodies was 720 units/l of cultural fluid. The inclusion bodies formed by the newly engineered strain are intended for use in the technology of producing pharmacologically promising cyclo-di-AMP.
About the Authors
M. A. VinterBelarus
Vinter Margarita A. – Junior Researcher
2, Kuprevich Str., 220141, Minsk
I. S. Kazlouski
Belarus
Kazlouski Illia S. – Ph. D. (Biology), Researcher
2, Kuprevich Str., 220141, Minsk
A. I. Zinchenko
Belarus
Zinchenko Anatoliy I. – Corresponding Member, D. Sc. (Biology), Professor, Head of the Laboratory
2, Kuprevich Str., 220141, Minsk
References
1. Yin W., Cai X., Ma H., Zhu L., Zhang Y., Chou S.-H., Galperin M. Y., He J. A decade of research on the second messenger c-di-AMP. FEMS Microbiology Reviews, 2020, vol. 44, no. 6, pp. 701–724. https://doi.org/10.1093/femsre/ fuaa019
2. Sanchez M. V., Ebensen T., Schulze K., Cargnelutti D., Blazejewska P., Scodeller E. A., Guzmán C. A. Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS ONE, 2014, vol. 9, no. 8, art. e104824. https://doi.org/10.1371/journal. pone.0104824
3. Lirussi D., Weissmann S. F., Ebensen T., Nitsche-Gloy U., Franz H. B. G., Guzman C. A. Cyclic di-adenosine monophosphate: a promising adjuvant candidate for the development of neonatal vaccines. Pharmaceutics, 2021, vol. 13, no. 2, art. 188. https://doi.org/10.3390/pharmaceutics13020188
4. Yan H., Chen W. The promise and challenges of cyclic dinucleotides as molecular adjuvants for vaccine development. Vaccines, 2021, vol, 9, no. 8, art. 917. https://doi.org/10.3390/vaccines9080917
5. Wang C., Hao M., Qi Q., Chen Y., Hartig J. S. Chemical synthesis, purification, and characterization of 3′-5′-linked canonical cyclic dinucleotides (CDNs). Methods in Enzymology, 2019, vol. 625, pp. 41−59. https://doi.org/10.1016/bs. mie.2019.04.022
6. Villaverde A., Carrio M. M. Protein aggregation in recombinant bacteria: Biological role of inclusion bodies. Biotechnology Letters, 2003, vol, 25, no. 17, pp. 1385–1395. https://doi.org/10.1023/a:1025024104862
7. Schramm F. D., Schroeder K., Jonas K. Protein aggregation in bacteria. FEMS Microbiology Reviews, 2020, vol. 44, no. 1, pp. 54–72. https://doi.org/10.1093/femsre/fuz026
8. Shchokolova A. S., Rymko A. N., Kvach S. V., Shabunya P. S., Fatykhava S. A., Zinchenko A. I. Enzymatic synthesis of 2′-ara and 2′-deoxy analogues of c-di-GMP. Nucleosides, Nucleotides and Nucleic Acids, 2015, vol. 34, no. 6, pp. 416–423. https://doi.org/10.1080/15257770.2015.1006775
9. Kamel S., Walczak M. C., Kaspar F., Westarp S., Neubauer P., Kurreck A. Thermostable adenosine 5′-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies. Scientific Reports, 2021, vol. 11, no. 1, art. 16880. https://doi.org/10.1038/s41598-021-96073-5
10. Singh A. K., Praharaj M., Lombardo K. A., Yoshida T., Matoso A., Baras A. S., Zhao L., Srikrishna G., Huang J., Prasad P., Powell J. D., Kates M., McConkey D., Pardoll D. M., Bishai W. R., Bivalacqua T. J. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nature Communications, 2022, vol. 13, no. 1, art. 878. https://doi.org/10.1038/s41467-022-28509-z
11. Mehne F. M., Gunka K., Eilers H., Herzberg C., Kaever V., Stülke J. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. Journal of Biological Chemistry, 2013, vol. 288, no. 3, pp. 2004−2017. https://doi.org/10.1074/jbc.m112.395491
12. Kazlovskij I. S., Radevich D. S., Rymko A. N., Shchokolova А. S., Kvach S. V., Zinchenko A. I. Construction of Escherichia coli strain, producing di-adenylate cyclase and its application for cyclic di-AMP synthesis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2015, no. 4, рр. 51–55 (in Russian).
13. Green M. R., Sambrook J. Molecular cloning: a laboratory manual, fourth ed. New York, 2012. 630 p.
14. Quan J., Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE, 2009, vol. 4, no. 7, art. e6441. https://doi.org/10.1371/journal.pone.0006441
15. Bhatwa A., Wang W., Hassan Y. I., Abraham N., Li X.-Z., Zhou T. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 2021, vol. 9, art. 630551. https://doi.org/10.3389/fbioe.2021.630551