Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Kinetics of fibrin clots destruction under ultrasonic cavitation

https://doi.org/10.29235/1561-8323-2022-66-6-587-594

Abstract

We studied the kinetic features of fibrin clot destruction in vitro under the action of ultrasonic cavitation generated by low-frequency (36 kHz) ultrasound (US) with the intensity I0  of 4.4–51.2 W/cm2, using a flexible waveguide concentrator. It was established that the rate of US destruction of clots immersed in saline at the initial stage of the process is proportional to I0 in the range of 12–51 W/cm2, corresponds to first-order kinetics, and is determined by the erosive processes without the formation of D-dimers and other fibrinolysis products at a minimum contribution of sonochemical reactions. The clot destruction rate is maximum at the initial time moment and decreases with increasing the US exposure duration (by 35 % in 1 min and by 72 % by the end of the second minute at I0 = 51.2 W/cm2). It was shown that in order to increase the completeness of clot destruction at a minimum administered US dose, it is advisable to minimize the US exposure time when using the highest values of the US intensity limited by the level of safe cavitation exposure to the vascular wall, hemostasis, and blood cells.

About the Authors

I. E. Adzerikho
Belarusian Medical Academy of Postgraduate Education
Belarus

Igor E. Adzerikho – D. Sc. (Medicine), Professor. Belarusian Medical Academy of Postgraduate Education.

3/3, P. Brovka Str., 220013, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Anatoly I. Kulak – Academician, D. Sc. (Chemistry), Professor, Director. Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus.

9/1, Surganov Str., 220072, Minsk



S. M. Rachok
Belarusian Medical Academy of Postgraduate Education
Belarus

Svetlana M. Rachok – Ph. D. (Medicine), Associate Professor. Belarusian Medical Academy of Postgraduate Education.

3/3, P. Brovka Str., 220013, Minsk



V. T. Minchenya
Belarus Scientific and Technological Park of the BNTU “Polytechnic”
Belarus

Vladimir T. Minchenya – Ph. D. (Engineering), Associate Professor. Science and Technology Park BNTU “Polytechnic”.

24, Ya. Kolas Str., 220013, Minsk



References

1. Hong A. S., Chae J.-S., Dubin S. B., Lee S., Fishbein M. C., Siegel R. J. Ultrasonic clot disruption: an in vitro study. American Heart Journal, 1990, vol. 120, no. 2, pp. 418–422. https://doi.org/10.1016/0002-8703(90)90088-f

2. Bader K. B., Gruber M. J., Holland C. K. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound in Medicine and Biology, 2015, vol. 41, no. 1, pp. 187–196. https://doi.org/10.1016/j.ultrasmedbio.2014.08.018

3. Datta S., Coussios C.-C., McAdory L. E., Tan J., Porter T., De Courten-Myers G., Holland C. K. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound in Medicine and Biology, 2006, vol. 32, no. 8, pp. 1257–1267. https://doi.org/10.1016/j.ultrasmedbio.2006.04.008

4. Rosenschein U., Bernstein J. J., DiSegni E., Kaplinsky E., Bernheim J., Rozenzsajn L. A. Experimental ultrasonic angioplasty: disruption of atherosclerotic plaques and thrombi in vitro and arterial recanalization in vivo. Journal of the American College of Cardiology, 1990, vol. 15, no. 3, pp. 711–717. https://doi.org/10.1016/0735-1097(90)90651-5

5. Trübestein G., Engel C., Etzel F., Sobbe A., Cremer H., Stumpff U. Thrombolysis by ultrasound. Clinical Science, 1976, vol. 51, no. 3, pp. 697–698. https://doi.org/10.1042/cs051697s

6. Siegel R. J., DonMichael T. A., Fishbein M. C., Bookstein J., Adler L., Reinsvold T., DeCastro E., Forrester J. S. In vivo ultrasound arterial recanalization of atherosclerotic total occlusions. Journal of the American College of Cardiology, 1990, vol. 15, no. 2, pp. 345–351. https://doi.org/10.1016/s0735-1097(10)80059-2

7. Adzerikho I. E., Mrochek A. G., Minchenya V. T., Dmitriev V. V., Kulak A. I. Combined low-frequency ultrasound and streptokinase intravascular destruction of arterial thrombi in vivo. Ultrasound in Medicine and Biology, 2011, vol. 37, no. 10, pp. 1644–1652. https://doi.org/10.1016/j.ultrasmedbio.2011.06.027

8. Siegel R. J., Gaines P., Crew J. R., Cumberland D. C. Clinical trial of percutaneous peripheral ultrasound angioplasty. Journal of the American College of Cardiology, 1993, vol. 22, no. 2, pp. 480–488. https://doi.org/10.1016/0735-1097(93)90053-4

9. Alexandrov A. V., Molina C. A., Grotta J. C., Garami Z., Ford S. R., Alvarez-Sabin J., Montaner J., Saqqur M., Demchuk A. M., Moyé L. A., Hill M. D., Wojner A. W. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. New England Journal of Medicine, 2004, vol. 351, no. 21, pp. 2170–2178. https://doi.org/10.1056/nejmoa041175

10. Hitchcock K. E., Holland C. K. Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke, 2010, vol. 41, no. 10, pp. S50–S53. https://doi.org/10.1161/strokeaha.110.595348

11. Cherniavsky E. A., Strakha I. S., Adzerikho I. E., Shkumatov V. M. Effects of low frequency ultrasound on some properties of fibrinogen and its plasminolysis. BMC Biochemistry, 2011, vol. 12, no. 1, pp. 1–11. https://doi.org/10.1186/1471-2091-12-60

12. Contamine R. F., WilhelmA. M., Berlan J., Delmas H. Power measurement in sonochemistry. Ultrasonics Sonochemistry, 1995, vol. 2, no. 1, pp. 43–47. https://doi.org/10.1016/1350-4177(94)00010-p

13. Margulis M. A. Sonochemistry and cavitation. Amsterdam, 1995. 547 p.

14. Adzerikho I., Kulak A., Rachok S., Minchenya V. Dependence of the Rate and Completeness of Fibrin Clot Destruction on the Acoustic Dose and Ultrasound Intensity. Ultrasound in Medicine and Biology, 2022, vol. 48, no. 5, pp. 846–855. https://doi.org/10.1016/j.ultrasmedbio.2022.01.005

15. Adzerikho I. E., Mrochek A. G., Dmitriev V. V., Lukyanchenko O. A., Kulak A. I. Ultrasound fibrin clot destruction in vitro in the presence of fibrinolytic agents. Ultrasonic Sonochemistry, 2001, vol. 8, no. 3, pp. 315–318. https://doi.org/10.1016/s1350-4177(01)00092-x


Review

Views: 405


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)