Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Effect of the hydroxycinnamic acids and their chitosan-based conjugates on the growth and biochemical parameters of microclone potato plants in vitro

https://doi.org/10.29235/1561-8323-2022-66-6-605-613

Abstract

This study determined the effect of exogenously applied hydroxycinnamic acids and their chitosan-based conjugates on growth and biochemical parameters of microclone potato plants (Solanum tuberosum L.) in vitro under optimal conditions. The findings of the present investigation confirm applying of chitosan-caffeic acid and chitosan-ferulic acid conjugates on microclone potato plants to improve growth and development. A significant growth-stimulating effect was found in caffeic acid and its chitosan-based conjugate. Chitosan behaved like a general elicitor inducing oxidative stress in plant cells. In turn, hydroxycinnamic acids acted as antioxidants to scavenge reactive oxygen species. The chitosan-caffeic acid conjugate can be considered as a low stress factor that activates metabolism and adaptation processes of microclonal potato plants.

About the Authors

N. A. Yalouskaya
V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Ninel A. Yalouskaya – Postgraduate Student, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus.

27, Akademicheskaya Str., 220072, Minsk



J. N. Kalatskaja
V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Joanna N. Kalatskaja – Ph. D. (Biology), Associate Professor, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus.

27, Akademicheskaya  Str.,  220072,  Minsk



N. A. Laman
V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Nikolai A. Laman – Academician, D. Sc. (Biology), Professor, Head of the Laboratory, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus.

27, Akademicheskaya Str., 220072, Minsk



K. S. Hileuskaya
Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
Belarus

Kseniya S. Hileuskaya – Ph. D. (Chemistry), Associate Professor, Senior Researcher, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus.

36, F. Skorina Str., 220141, Minsk



V. I. Kulikouskaya
Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
Belarus

Viktoryia I. Kulikouskaya – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus.

36, F. Skorina Str., 220141, Minsk



V. V. Nikalaichuk
Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
Belarus

Viktoryia V. Nikalaichuk – Master Student, Junior Researcher. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus.

36, F. Skorina Str., 220141, Minsk



References

1. Sharif R., Mujtaba M., Rahman M. U., Shalmani A., Ahmad H., Anwar T., Tianchan D., Wang X. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules, 2018, vol. 23, no. 4, art. 872. https://doi.org/10.3390/molecules23040872

2. El Hadrami A., Adam L. R., El Hadrami I., Daayf F. Chitosan in Plant Protection. Marine Drugs, 2010, vol. 8, no. 4, pp. 968–987. https://doi.org/10.3390/md8040968

3. Varlamov V. P., Il’ina A. V., Shagdarova B. C., Lun’cov A. P., Mysyakina I. S. Chitin/chitosan and its derivatives: fundamental and applied aspects. Uspekhi Biologicheskoi Khimii [Advances in Biological Chemistry], 2020, vol. 60, pp. 317–368 (in Russian).

4. Lichtenthaler H., Wellburn A. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983, vol. 11, no. 5, pp. 591–592. https://doi.org/10.1042/bst0110591

5. Andrianova Yu. E., Tarchevskii I. A. Chlorophyll and plant productivity. Moscow, 2000. 135 p. (in Russian).

6. Bellincampi D., Dipierro N., Salvi G., Cervone F., De Lorenzo G. Extracellular H2O2 induced by Oligagalacturonides is not involved in the inhibition of the auxin-regulated roIB gene expression in tobacco leaf explants. Plant Physiology, 2000, vol. 122, no. 4, pp. 1379–1386. https://doi.org/10.1104/pp.122.4.1379

7. De Vos C. H. R., Schat H., Vooijs R., Ernst W. H. O. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. Journal of Plant Physiology, 1989, vol. 135, no. 2, pp. 164–169. https://doi.org/10.1016/s0176-1617(89)80171-3

8. Bates L. S., Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, vol. 39, no. 1, pp. 205–207. https://doi.org/10.1007/bf00018060

9. Nedved E. L., Kalatskaja J. N., Ovchinnikov I. A., Rybinskaya E. I., Laman N. A., Kraskouski A. N., Nikalaichuk V. V., Hileuskaya K. S., Kulikouskaya V. I., Agabekov V. E. Growth parameters and antioxidant activity in cucumber seedlings with the application of chitosan and hydroxycinnamic acids conjugates under salt stress. Applied Biochemistry and Microbiology, 2022, vol. 58, no. 1, pp. 69–76. https://doi.org/10.1134/s0003683822010069

10. Marchiosi R., dos Santos W. D., Constantin R. P., de Lima R. B., Soares A. R., Finger-Teixeira A., Mota T. R., de Oliveira D. M., de Paiva Foletto-Felipe M., Abrahão J., Ferrarese-Filho O. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, vol. 19, no. 4, pp. 865–906. https://doi.org/10.1007/s11101-020-09689-2

11. Lee Y. S., Kim Y. H., Kim S. B. Changes in the respiration, growth and vitamin C content of Soybean sprouts in response to chitosan of different molecular weights. HortScience, 2005, vol. 40, no. 5, pp. 1333–1335. https://doi.org/10.21273/hortsci.40.5.1333

12. Ha V. T. T., Luan L. Q., Nagasawa N., Kume T., Yoshii F., Nakanishi T. M. Biological effect of irradiated chitosan on plants in vitro. Biotechnology and Applied Biochemistry, 2005, vol. 41, no. 1, pp. 49–57. https://doi.org/10.1042/ba20030219

13. Nikalaichuk V., Hileuskaya K., Kraskouski A., Kulikouskaya V., Nedved H., Kalatskaja J., Rybinskaya E., Herasimovich K., Laman N., Agabekov V. Chitosan-hydroxycinnamic acid conjugates: synthesis, photostability and phytotoxicity to seed germination of barley. Journal of Applied Polymer Science, 2022, vol. 139, no. 14, art. 51884. https://doi.org/10.1002/app.51884

14. Liang X., Zhang L., Natarajan S. K., Becker D. F. Proline mechanisms of stress survival. Antioxidants and Redox Signaling, 2013, vol. 19, no. 9, pp. 998–1011. https://doi.org/10.1089/ars.2012.5074

15. Siquet C., Paiva-Martins F., Lima J. L. F. C., Reis S., Borges F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids – A structure-activity relationship study. Free Radical Research, 2006, vol. 40, no. 4, pp. 433–442. https://doi.org/10.1080/10715760500540442


Review

Views: 495


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)