New approaches to calculation of the boundary layer by the Karman–Pohlhausen method
https://doi.org/10.29235/1561-8323-2023-67-2-144-155
Abstract
Several efficient computational schemes, providing the attainment of minimum errors in determining the main parameters of a boundary layer, are presented. The new trinomial polynomial obtained for definition of the velocity profile in the boundary layer much exceeds in accuracy all the known analogous solutions. A scheme of finding a fairly exact solution in the form of the half-sum of the classical Pohlhausen polynomials of the third and fourth degrees is proposed. This solution possesses better approximation properties compared to those of the initial profiles. A high-accuracy solution has been obtained for the velocity profile in the form the velocity profile curve being almost coincident with the exact solution. The friction stress error is . This solution yields an almost exact value of friction stress with very small calculation errors of the displacement thickness (0.12 %) and the form parameter (0.12 %).
About the Author
V. A. KotBelarus
Kot Valery A. – Ph. D. (Engineering), Senior researcher
15, P. Brovka Str., 220072, Minsk
References
1. Prandtl L. Über flüssigkeits bewegungen bei sehr kleiner reibung. III Internationalen Mathematiker Kongresses, Heidelberg, 8-13 August 1904. Leipzig, 1904, pp. 484–491 (in German).
2. Stewartson K. The Theory of Laminar Boundary Layers in Incompressible Fluids. Oxford University Press, 1964. 191 p.
3. Blasius H. Grenzschichten in flüssigkeiten mit kleiner reibung. Journal of Applied Mathematics and Mechanics, 1908, vol. 56, pp. 1–37 (in German).
4. Karman T. V. Über laminare und turbulente Reibung. Journal of Applied Mathematics and Mechanics, 1921, vol. 1, no. 4, pp. 233–252 (in German). https://doi.org/10.1002/zamm.19210010401
5. Pohlhausen K. Zur näherungsweisen integration der differentialgleichung der laminaren grenzschicht. Journal of Applied Mathematics and Mechanics, 1921, vol. 1, no. 4, pp. 252–290 (in German). https://doi.org/10.1002/zamm.19210010402
6. White F. M. Viscous Fluid Flow. New York, 2006. 652 p.
7. Schlichting H., Gersten K. Boundary-Layer Theory. Berlin, 2017. https://doi.org/10.1007/978-3-662-52919-5
8. Shanks D. The Blasius and Weyl constants in boundary-layer theory. Physical Review, 1953, vol. 90, no. 377.
9. Howarth L. On the solution of the laminar boundary layer equations. Proceedings of the Royal Society of London. Series A – Mathematical and Physical Sciences, 1938, vol. 164, no. 919, pp. 547–579. https://doi.org/10.1098/rspa.1938.0037
10. Asaithambi A. Solution of the Falkner–Skan equation by recursive evaluation of Taylor coefficients. Journal of Computational and Applied Mathematics, 2005, vol. 176, no. 1, pp. 203–214. https://doi.org/10.1016/j.cam.2004.07.013
11. Robin W. Some new approximate analytical representations of the Blasius function global. Journal of Mathematics, 2015, vol. 2, no. 2, pp. 150–155.
12. Lal S. A., Neeraj P. M. An accurate Taylors series solution with high radius of convergence for the Blasius function and parameters of asymptotic variation. Journal of Applied Fluid Mechanics, 2014, vol. 7, no. 4, pp. 557–564. https://doi. org/10.36884/jafm.7.04.21339
13. Curle N. The laminar boundary layer equation. Clarendon Press, 1962. 162 p.
14. Majdalani J., Xuuan Li-J. On the Karman momentum-integral approach and the Pohlhausen paradox. Physics of Fluids, 2020, vol. 32, no. 12, art. 123605. https://doi.org/10.1063/5.0036786
15. Sutton M. A. An approximate solution of the boundary layer equations for a flat plate. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Sciences, 1937, vol. 23, no. 158, pp. 1146–1152. https://doi.org/10.1080/14786443708561882