Консервативные компактные и монотонные разностные схемы четвертого порядка для квазилинейных уравнений
https://doi.org/10.29235/1561-8323-2024-68-1-7-14
Аннотация
Впервые строятся и исследуются компактные и монотонные разностные схемы 4-го порядка точности, сохраняющие свойство консервативности (дивергентности), для квазилинейного стационарного уравнения реакции–диффузии. Для линеаризации нелинейной разностной схемы используется итерационный метод типа Ньютона–Зейделя, также сохраняющий идею консервативности и монотонности (s + 1)-й итерации. Основная идея реализации предложенной разностной схемы на трехточечном шаблоне методом прогонки основана на возможности распараллеливания вычислительного процесса. Сначала решение находится в четных узлах, а затем в нечетных. При этом все уравнения остаются трехточечными относительно неизвестной функции. Возникающие проблемы нахождения дополнительных граничных условий в приграничных узлах решаются при помощи интерполяционного многочлена Ньютона 4-го порядка точности. Приведенные результаты вычислительного эксперимента иллюстрируют эффективность предложенного алгоритма. Указывается также возможность обобщения данного метода на более сложные задачи.
Об авторах
П. П. МатусБеларусь
Матус Петр Павлович – член-корреспондент, д-р физ.-мат. наук, профессор, гл. науч. сотрудник.
Ул. Сурганова, 11, 220072, Минск
Г. Ф. Громыко
Беларусь
Громыко Галина Феодосьевна – канд. физ.-мат. наук, заведующий отделом.
Ул. Сурганова, 11, 220072, Минск
Б. Д. Утебаев
Узбекистан
Утебаев Бахадыр Даулетбай улы – канд. физ.-мат. наук, доцент.
Ул. Ч. Абдирова, 1, 230112, Нукус
Список литературы
1. Матус, П. П. Компактные разностные схемы на трехточечном шаблоне для гиперболических уравнений второго порядка / П. П. Матус, Хоанг Тхи Киеу Ань // Дифференц. уравнения. – 2021. – Т. 57, № 7. – С. 963–975. https://doi.org/10.31857/s0374064121070098
2. Матус, П. П. Компактные и монотонные разностные схемы для параболических уравнений / П. П. Матус, Б. Д. Утебаев // Математическое моделирование. – 2021. – Т. 33, № 4. – С. 60–78. https://doi.org/10.20948/mm-2021-04-04
3. Матус, П. П. Компактные и монотонные разностные схемы для обобщенного уравнения Фишера / П. П. Матус, Б. Д. Утебаев // Дифференц. уравнения. – 2022. – Т. 58, № 7. – С. 947–961.
4. Самарский, А. А. Схемы повышенного порядка точности для многомерного уравнения теплопроводности / А. А. Самарский // Журн. вычисл. математики и мат. физики. – 1963. – Т. 3, № 5. – С. 812–840.
5. Тихонов, А. Н. О сходимости разностных схем в классе разрывных коэффициентов / А. Н. Тихонов, А. А. Самарский // Докл. АН СССР. – 1959. – Т. 124, № 3. – С. 1529–1532.
6. Тихонов, А. Н. Об однородных разностных схемах / А. Н. Тихонов, А. А. Самарский // Журн. вычисл. математики и мат. физики. – 1961. – Т. 1, № 1. – С. 5–63.
7. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М., 1983. – 616 с.
8. Samarskii, A. A. Difference schemes with operator factors / A. A. Samarskii, P. P. Matus, P. N. Vabishchevich. – Dordrecht, 2002. – 384 p. https://doi.org/10.1007/978-94-015-9874-3
9. Самарский, А. А. Разностные методы для эллиптических уравнений / А. А. Самарский, В. Б. Андреев. – М., 1976. – 352 с.
10. Матус, П. П. О согласованных двусторонних оценках решений квазилинейных параболических уравнений и их аппроксимаций / П. П. Матус, Д. Б. Поляков // Дифференц. уравнения. – 2017. – Т. 53, № 7. – С. 991–1000. https://doi.org/10.1134/s0374064117070123
11. Киреев, В. И. Численные методы в примерах и задачах / В. И. Киреев, А. В. Пантелеев. – М., 2008. – 480 с.
12. Tingchun, Wang. Convergence of an eighth-order compact difference scheme for the nonlinear Schrodinger equation / Wang Tingchun // Advances in Numerical Analysis. – 2012. – Vol. 2012. – Art. 913429. https://doi.org/10.1155/2012/913429