Консервативные компактные и монотонные разностные схемы четвертого порядка для квазилинейных уравнений
https://doi.org/10.29235/1561-8323-2024-68-1-7-14
Аннотация
Впервые строятся и исследуются компактные и монотонные разностные схемы 4-го порядка точности, сохраняющие свойство консервативности (дивергентности), для квазилинейного стационарного уравнения реакции–диффузии. Для линеаризации нелинейной разностной схемы используется итерационный метод типа Ньютона–Зейделя, также сохраняющий идею консервативности и монотонности (s + 1)-й итерации. Основная идея реализации предложенной разностной схемы на трехточечном шаблоне методом прогонки основана на возможности распараллеливания вычислительного процесса. Сначала решение находится в четных узлах, а затем в нечетных. При этом все уравнения остаются трехточечными относительно неизвестной функции. Возникающие проблемы нахождения дополнительных граничных условий в приграничных узлах решаются при помощи интерполяционного многочлена Ньютона 4-го порядка точности. Приведенные результаты вычислительного эксперимента иллюстрируют эффективность предложенного алгоритма. Указывается также возможность обобщения данного метода на более сложные задачи.