SYNTHESIS AND THE STRUCTURE OF TiO2:MoO3 GAS SENSING COMPOSITE MATERIALS
Abstract
Introduction of molybdenum trioxide to gas sensing materials based on titanium dioxide results in a considerable increase of the output signal in the hydrogen-air environment. It is established that the value of the output signal reaches the maximum at the 1 mol. % MoO3 content in the composite material. Improved gas sensing characteristics of TiO2:MoO3 composite correlate with the structural and phase peculiarities of this system – the inhibition of TiO2 crystallization in the TiO2:MoO3 system, the shift of anatase-rutile phase transition to the higher temperature area in comparison with the temperature of this transition in unloaded TiO2, and with the presence of different types of tetrahonal distortions in MoO6 octahedrons, which ensures the MoO3 lattice high activity in the processes of hydrogen catalytic oxidation, and also with the crystallization of highly dispersed molybdenum oxide with a particle size of 10 nm.
About the Authors
N. E. BOBORIKOBelarus
I. A. BOBRIKOV
Russian Federation
D. I. MYCHKO
Belarus
G. F. KARKOTSKY
Belarus
References
1. Komandur V. R. C., Kondakindi R. R., Chinthala P. K. // Catal. Commun. 2001. Vol. 2. P. 277–284.
2. Galatsis K. et al. // Sens. Actuators B. 2001. Vol. 77. P. 472–477.
3. Zhao-Bin W., Cheng-Dong W., Qin X. // Acta Physico-Chimica Sinica. 1994. Vol. 10. P. 402–408.
4. Мычко Д. И., Боборико Н. Е., Каркоцкий Г. Ф., Дашко Н. С. // Свиридовские чтения. 2012. Вып. 8. С. 109–115.
5. Боборико Н. Е., Мычко Д. И. // Неорг. мат. 2013. Т. 49, № 8. С. 853–859.
6. Aksenov V. L. et al. // J. Neutron Res. 1997. Vol. 5. P. 181–200.
7. Rodriguez-Carvajal J. // Physica B. 1993. Vol. 192. P. 55–62.
8. Кристаллографическая и кристаллохимическая База данных для минералов и их структурных аналогов [Электронный ресурс]. – Режим доступа: http://database.iem.ac.ru/mincryst/rus/.
9. Bruno G. et al. // J. Eur. Ceram. Soc. 2010. Vol. 30. P. 2555–2562.
10. Боборико Н. Е., Лапчук Н. М., Азарко И. И., Мычко Д. И. // Журн. прикладной спектроскопии. 2013. Т. 80, № 2. С. 211–215.
11. Boboriko N. E., Mychko D. I. // Vib. Spectrosc. 2014. Vol. 70. P. 36–41.