Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

LOCAL ENERGY HETEROGENEITY OF THE FLAT SURFACES OF ALUMINA AND TITANIUM OXIDE

Abstract

The local energy heterogeneity of the flat surfaces of alumina and titanium oxide is studied using the density functional theory. The periodic total energy calculations have shown that the positions of the adsorption sites corresponding to potential energy minima of the oxide surface interaction with a trial particle (hydrogen atom) depend on its distance to the surface. The active sites of (0001) Al2O3 and (001) TiO2 surfaces at distances of more than 2 Å are characterized by one global minimum of potential energy that localizes upon the surface metal atom. At distances of the order of 1–2 Å the global minimum degenerates in several energy states and number of which is defined by the initial surface symmetry. There are three active sites with hexagonal symmetry within an elementary cell of (0001) Al2O3 surface and two sites with the mirror symmetry on a (001) TiO2 surface, displaced to the metal atom relatively of electronic density maxima positions of oxygen surface atoms. The results obtained are explained by perturbation introduced by the electron of a trial particle into surface electronic density distribution that leads to the degeneration of the active site. New sites positions do not coincide with the space geometry of metal and oxygen atoms at oxide surface.

About the Authors

A. L. ZAITSEV
Институт тепло- и массообмена им. А. В. Лыкова, Минск
Belarus


Yu. M. PLESKACHEVSKY
Гомельский филиал НАН Беларуси
Belarus


References

1. Дункен Х., Лыгин В. И. Квантовая химия адсорбции на поверхности твердых тел. М., 1980.

2. Окура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности. М., 2005.

3. Каталитические свойства веществ / под ред. А. А. Ройтера. М., 1976. Т. 3.

4. Smith R. L., Lu W., Rohrer G. S. // Surface Science. 1995. Vol. 322. Р. 293–300.

5. Marmier A., Parker S. C. // Phys. Rev. B. 2004. Vol. 69. 115409.

6. Siegel D., Hector L. G., Adams J. B. // Phys. Rev. B. 2002. Vol. 65. 085415.

7. Зайцев А. Л., Детро Ф., Плескачевский Ю. М., Гонз К. // Физика твердого тела. 2003. Т. 45, № 12. С. 2118–2123.

8. Зайцев А. Л., Плескачевский Ю. М., Чижик С. А. // Инженерно-физический журн. 2008. Т. 81, № 1. С. 157–164.

9. Hotsenpiller P. A. M., Bolt J. D., Farneth W. E. et. al. // J. Phys. Chem. B. 1998. Vol. 102. P. 3216–3226.

10. Jarvis E. A. A., Carter E. A. // J. Phys. Chem. B. 2001. Vol. 105. P. 4045–4052.

11. Toshitaka Kubo, Kazuhiro Sayama, Hisakazu Nozoyet // J. Am. Chem. Soc. 2006. Vol. 128. P. 4074–4078.

12. Ariga H., Taniike T., Morikawa H. et al. // Chem. Phys. Lett. 2008. Vol. 454, iss. 4–6. P. 350–354.

13. Muscat J., Harrison N. M. // Surface Science. 2000. Vol. 446. P. 119–127.

14. Кон В. // УФН. 2002. T. 172, № 3. C. 336–348.

15. Gonze X., Amadon B., Anglade P.-M. et al. // Comp. Phys. Com. 2009. Vol. 188, N 12. P. 2582–2615.

16. Ceperley D. M., Alder B. J. // Phys. Rev. Lett. 1980. Vol. 45. P. 566–569.

17. Troullier N., Martins J. L. // Phys. Rev. B. 1991. Vol. 43. P. 1993–2006.

18. Hartwigsen С., Goedecker S., Hutter J. // Phys. Rev. B. 1998. Vol. 58. Р. 3641–3662.

19. Monkhorst H. J., Pack J. D. // Phys. Rev. B. 1976. Vol. 13. P. 5188–5192.

20. Скворцов А. В. Триангуляция Делоне и её применение. Томск, 2002.


Review

Views: 793


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)