CALCULATION OF HAUSDORFF DIMENSIONS OF MORAN ’S FRACTALS BY MEANS OF ENCODING SPACES
Abstract
We prove that the Hausdorff dimension of any subset of Moran’s fractal is equal to that of the set of sequences encoding this subset under a suitable choice of metrics on the encoding set.
About the Authors
V. I. BAKHTINPoland
P. N. VOROBEI
Belarus
References
1. Edgar G. Measure, Topology, and Fractal Geometry. Springer, 2008. – 292 p.
2. Falconer K. Fractal Geometry. Mathematical foundations and applications. Chichester: Wiley, 2003. – 367 p.
3. Песин Я. Теория размерности и динамические системы. Современный взгляд и приложения. Москва; Ижевск, 2002. – 404 с.
4. Billingsley P. // Ill. J. Math. 1960. Vol. 4. P. 187–209.
5. Billingsley P. // Ill. J. Math. 1961. Vol. 5. P. 291–298.
6. Young L.-S. // Ergod. Theory and Dyn. Syst. 1982. Vol. 2. P. 109–124.
7. Schikhof W. H. Ultrametric calculus. An introduction to p-adic analysis. Camb. Univ. Press, 2007. – 320 p.
8. Moran P. A. P. // Proc. Camb. Phyl. Soc. 1946. Vol. 42. P. 15–23.