MONOTONE DIFFERENCE SCHEMES FOR LINEAR PARABOLIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS
Abstract
In this paper, for parabolic equations with mixed boundary conditions monotone schemes are constructed. Moreover we establish an important corollary of the maximum principle for them. On the basis of this corollary one can make a conclusion about the stability of the algorithm in the uniform norm. The idea is to use half-integer nodes at boundary points of the boundary conditions with the second or third order. The obtained results are generalized to construct the similar algorithm for equations of poroelasticity in the one-dimensional case.
About the Authors
P. P. MATUSBelarus
VO THI KIM TUYEN
Belarus
FRANCISCO GASPAR
Spain
References
1. Самарский А. А. Теория разностных схем. М.: Наука, 1977.
2. Самарский А. А., Вабищевич П. Н., Матус П. П. Разностные схемы с операторными множителями. М.: Наука, 1998.
3. Самарский А. А., Мажукин В. И., Малафей Д. А., Матус П. П. // ЖВМ и МФ. 2001. Т. 41, № 3.
4. Matus P. // Comput. Methods Appl. Math. 2014. Vol. 14, N 3. P. 361–371.
5. Naumovich A. Efficient numerical methods for the Biot poroelasticity system in multilayered domains: genehmigte Dissertation, 2007.
6. Gaspar F. J., Lisbona F. J., Vabishchevich P. N. // Applied Numerical Mathematics. 2003. Vol. 44. P. 487–506.
7. Matus P., Martsynkevich G. // Comput. Meth. Appl. Math. 2004. Vol. 4, N 3.