Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

MONOTONE DIFFERENCE SCHEMES FOR LINEAR PARABOLIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS

Abstract

In this paper, for parabolic equations with mixed boundary conditions monotone schemes are constructed. Moreover we establish an important corollary of the maximum principle for them. On the basis of this corollary one can make a conclusion about the stability of the algorithm in the uniform norm. The idea is to use half-integer nodes at boundary points of the boundary conditions with the second or third order. The obtained results are generalized to construct the similar algorithm for equations of poroelasticity in the one-dimensional case.

About the Authors

P. P. MATUS
Институт математики НАН Беларуси, Минск
Belarus


VO THI KIM TUYEN
Белорусский государственный университет, Минск
Belarus


FRANCISCO GASPAR
Университет Сарагосы
Spain


References

1. Самарский А. А. Теория разностных схем. М.: Наука, 1977.

2. Самарский А. А., Вабищевич П. Н., Матус П. П. Разностные схемы с операторными множителями. М.: Наука, 1998.

3. Самарский А. А., Мажукин В. И., Малафей Д. А., Матус П. П. // ЖВМ и МФ. 2001. Т. 41, № 3.

4. Matus P. // Comput. Methods Appl. Math. 2014. Vol. 14, N 3. P. 361–371.

5. Naumovich A. Efficient numerical methods for the Biot poroelasticity system in multilayered domains: genehmigte Dissertation, 2007.

6. Gaspar F. J., Lisbona F. J., Vabishchevich P. N. // Applied Numerical Mathematics. 2003. Vol. 44. P. 487–506.

7. Matus P., Martsynkevich G. // Comput. Meth. Appl. Math. 2004. Vol. 4, N 3.


Review

Views: 876


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)