STANDARD GAS-PHASE FORMATION ENTHALPIES AND RELATIVE STABILITY OF С-ALKOXY-1,2,4-TRIAZOLES TAUTOMERIC FORMS AND ISOMERIC N-METHYL-C-METOXY-1,2,4-TRIAZOLES: QUANTUM-CHEMICAL CALCULATIONS
Abstract
The formation enthalpies of tautomeric forms of C-alkoxy-1,2,4-triazoles (alkoxy = OCH3, OC2H5, Oi-C3H7, Ot-C4H9) and isomeric N-methyl-C-methoxy-1,2,4-triazoles have been calculated by means of designed isodesmic and isomerisation reactions. The relative Gibbs energies for their tautomeric forms and isomers in aqueous solution have been calculated. N2-tautomers and isomers of C-alkoxy-1,2,4-triazoles wеre found to have the smallest values of formation enthalpy whereas N4-forms are less stable in gaseous phase. Increasing of electron donor properties of substituent leads to the stabilization of N2-tautomers in comparison with N1-tautomers. N1- and N2-tautomers and isomers have similar values of Gibbs free energy in aqueous solution. In contrast to gaseous phase, N1-derivatives of C-methoxy- and C-ethoxy-1,2,4-triazoles as well as N-methyl-C-methoxy-1,2,4-triazoles are more stable than corresponding N2-derivatives. This is due to higher polarity of N1-isomers in comparison with N2-ones. N4-derivatives are less stable in gaseous phase as well as in aqueous solution.
About the Authors
VADIM E. MATULISBelarus
Y. I. GRIGORIEV
Belarus
G. T. SUKHANOV
Russian Federation
I. A. KRUPNOVA
Russian Federation
O. A. IVASHKEVICH
Belarus
References
1. Pharmaexpert [Electronic resource]. – Mode of access: http://pharmaexpert.ru/passonline.
2. Певзнер М. С., Самаренко В. Я., Багал Л. И. // Химия гетероциклических соединений. 1970. № 4. С. 568–571.
3. Nagao Y., Sano Sh., Ochial M. // Tetrahedron. 1990. Vol. 46. P. 3211–3232.
4. Суханов Г. Т., Суханова А. Г., Филиппова Ю. В. и др. // Ползуновский Вестн. 2013. № 1. С. 24–26.
5. Matulis Vadim E., Ivashkevich O. A., Gaponik P. N. et al. // J. Mol. Struct. (Theochem). 2008. Vol. 854. P. 18–25.
6. Frisch M. J. et al. // Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.
7. Becke A. D. // J. Chem. Phys. 1993. Vol. 98. P. 5648–5652.
8. Curtiss L. A., Raghavachari K., Redfern P. C. et al. // J. Chem. Phys. 1998. Vol. 109. P. 7764–7776.
9. Curtiss L. A., Redfern P. C., Raghavachari K. et al. // J. Chem. Phys. 1999. Vol. 110. P. 4703–4709.
10. Cances M. T., Mennucci B., Tomasi J. // J. Chem. Phys. 1997. Vol. 107. P. 3032–3041.
11. Ивашкевич О. А., Гапоник П. Н., Матулис Вит. Э. и др. // ЖОХ. 2003. Т. 73. С. 296–303.
12. Ивашкевич О. А., Матулис Вадим Э., Гапоник П. Н. и др. // ХГС. 2008. № 12. С. 1816–1828.
13. Wong M. W., Leung-Toung R., Wentrup C. // J. Am. Chem. Soc. 1993. Vol. 115. P. 2465–2472.
14. Mazurek A. P., Sadlej-Sosnowska N. // Chem. Phys. Lett. 2000. Vol. 330. P. 212–218.
15. Jimenez P., Roux M. V., Turrion C. // J. Chem. Thermodyn. 1989. Vol. 21. P. 759–764.
16. Trifonov R. E., Alkorta I., Ostrovskii V. A. et al. // J. Mol. Struct. (Theochem). 2004. Vol. 668. P. 123–132.