KRASNOSELSKI'S THEOREM AND ITERATION PROCEDURES FOR SOLUTION OF ILL-POSED PROBLEMS WITH SELF-ADJOINT OPERATORS
Abstract
In this article, the main results on the behavior of various iterations for approximate solution of ill-posed equations with self-adjoint operators in a Hilbert space are presented: sufficient conditions for iteration convergence are obtained, the behavior of residuals and corrections is studied on subspaces of sourcewise representable functions, the convergence of the approximations in the Hilbert space norm weaker than the original one is established.
About the Authors
P. P. ZABREIKOBelarus
O. V. MATYSIK
Belarus
References
1. Забрейко П. П., Матысик О. В. // Докл. НАН Беларуси. 2014. Т. 58, № 5. С. 12–17.
2. Данфорд Н., Шварц Д. Линейные операторы. Спектральная теория. М., 1966.
3. Матысик О. В. Явные и неявные итерационные процедуры решения некорректно поставленных задач. Брест, 2014.
4. Вайникко Г. М., Веретенников А. Ю. Итерационные процедуры в некорректных задачах. М., 1986.