1. Лекции по теории графов / В. А. Емеличев [и др.]. - М.: Наука, 1990. - 384 с.
2. DeTemple, D. Graphs associated with triangulations of lattice polygons / D. DeTemple, J. M. Robertson // J. Austral. Math. Soc. Ser. A. - 1989. - Vol. 47, N 3. - P. 391-398.
3. DeTemple, D. Partition graphs / D. DeTemple, F. Harary, J. Robertson // Soochow J. Math. - 1987. - Vol. 13, N 2. - P. 121-129.
4. On the recognition of general partition graphs / T. Kloks [et al.] // Lect. Notes Comput. Sci. - 2003. - Vol. 2880. - P. 273-283.
5. McAvaney, K. A characterization and hereditary properties for partition graphs / K. McAvaney, J. Robertson, D. De- Temple // Discrete Math. - 1993. - Vol. 113, N 1-3. - P. 131-142.
6. Miklavič, S. Equistable graphs, general partition graphs, triangle graphs, and graph products / S. Miklavič, M. Milanič // Discrete Appl. Math. - 2011. - Vol. 159, N 11. - P. 1148- 1159.
7. Cerioli, M. R. Structural results for general partition, equistable and triangle graphs / M. R. Cerioli, T. L. Martins // Electron. Notes Discrete Math. - 2015. - Vol. 49. - P. 713-718.
8. Recent examples in the theory of partition graphs / D. W. DeTemple [et al.] // Discrete Math. - 1993. - Vol. 113, N 1-3. - P. 255-258.
9. Зверович, И. Е. О графах разбиений / И. Е. Зверович, Ю. Л. Орлович // Докл. НАН Беларуси. - 2002. - Т. 46, № 4. - С. 38-42.
10. Orlovich, Yu. L. Independent domination in triangle graphs / Y. L. Orlovich, I. E. Zverovich // Electron. Notes Discrete Math. - 2007. - Vol. 28. - P. 341-348.
11. Mahadev, N. V. R. Equistable graphs / N. V. R. Mahadev, U. N. Peled, F. Sun // J. Graph Theory. - 1994. - Vol. 18, N 3. - P. 281-299.
12. Levit, V. E. Equistable simplicial, very well-covered, and line graphs / V. E. Levit, M. Milanič // Discrete Appl. Math. - 2014. - Vol. 165. - P. 205-212.
13. Milanič, M. Equistarable graphs and counterexamples to three conjectures on equistable raphs / M. Milanič, N. Trotignon // ArXiv e-prints (arXiv:1407.1670) [Electronic resource]. - Mode of access: http://arxiv.org/abs/1407.1670. - Date of access: 17.05.2016.
14. Boros, E. On equistable, split, CIS, and related classes of graphs / E. Boros, V. Gurvich, M. Milanič // ArXiv e-prints (arXiv:1505.05683) [Electronic resource]. - Mode of access: http://arxiv.org/abs/1505.05683. - Date of access: 17.05.2016.
15. Sampathkumar, E. The neighbourhood number of a graph / E. Sampathkumar, P. S. Neeralagi // Indian J. Pure Appl. Math. - 1985. - Vol. 16. - P. 126-132.
16. Sampathkumar, E. Independent, perfect and connected neighbourhood numbers of a graph / E. Sampathkumar, P. S. Neeralagi // J. Combin. Inf. Syst. Sci. - 1994. - Vol. 19, N 3-4. - P. 139-145.
17. Bollobás, B. Graph-theoretic parameters concerning domination, independence, and irredundance / B. Bollobás, E. J. Cockayne // J. Graph Theory. - 1979. - Vol. 3, N 3. - P. 241- 249.
18. Картынник, Ю. А. Доминантно-треугольные графы и графы верхних границ / Ю. А. Картынник, Ю. Л. Орлович // Докл. НАН Беларуси. - 2014. - Т. 58, № 1. - С. 16-25.
19. When are chordal graphs also partition graphs? / C. Anbeek [et al.] // Australas. J. Combin. - 1997. - Vol. 16. - P. 285-293.
20. Simplicial graphs / G. A. Cheston [et al.] // Congr. Numer. - 1988. - Vol. 67. - P. 105-113. 21. Cheston, G. A. A survey of the algorithmic properties of simplicial, upper bound and middle graphs / G. A. Cheston, T. S. Jap // J. Graph Algorithms Appl. - 2006. - Vol. 10, N 2. - P. 159-190.