MONOTONE DIFFERENCE SCHEMES FOR SYSTEMS OF ELLIPTIC AND PARABOLIC EQUATIONS
Abstract
In this article, for the canonical form of vector-difference schemes under the positivity conditions of matrix coefficients the two-sided estimates for an approximate solution at the arbitrary non sign- constant input data of the problem are obtained. The obtained results are used for deriving two-swided estimates and a priori estimates in the norm C of monotone vector-difference schemes that approximate the weakly coupled systems of elliptic and parabolic equations with the Dirichlet foundary conditions.
About the Authors
FRANCISCO GASPARSpain
PIOTR MATUS
Belarus
VO THI KIM TUYEN
Belarus
LE MINH HIEU
Belarus
References
1. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1977.
2. Матус, П. П. Монотонные разностные схемы для линейного параболического уравнения с граничными условиями смешанного типа / П. П. Матус, В. Т. К. Туен, Ф. Ж. Гаспар // Докл. НАН Беларуси. – 2014. – Т. 58, № 5. – С. 18–22.
3. Matus, P. P. The maximum principle and same its applications / P. P. Matus // Comput. Meth. Appl. Math. – 2002. – Vol. 2, N 1. – Р. 50–91.
4. Mitidieri, E. Weakly Coupled Elliptic Systems and Positivity / Enzo Mitidieri, Guido Sweers // Mathematische Nachrichten. – 1995. – Vol. 173, Issue 1. – P. 259–286.
5. Гантмахер, Ф. Р. Теория матриц / Ф. Р. Гантмахер. – М.: Наука, 1967. – 576 с.