Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

MONOTONE DIFFERENCE SCHEMES FOR SYSTEMS OF ELLIPTIC AND PARABOLIC EQUATIONS

Abstract

In this article, for the canonical form of vector-difference schemes under the positivity conditions of matrix coefficients the two-sided estimates for an approximate solution at the arbitrary non sign- constant input data of the problem are obtained. The obtained results are used for deriving two-swided estimates and a priori estimates in the norm C of monotone vector-difference schemes that approximate the weakly coupled systems of elliptic and parabolic equations with the Dirichlet foundary conditions.

About the Authors

FRANCISCO GASPAR
University of Saragosa
Spain


PIOTR MATUS
Institute of Mathematics of the National Academy of Sciences of Belarus; Catholic University of Lublin, Poland
Belarus


VO THI KIM TUYEN
Belarusian State University
Belarus


LE MINH HIEU
Belarusian State University
Belarus


References

1. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1977.

2. Матус, П. П. Монотонные разностные схемы для линейного параболического уравнения с граничными условиями смешанного типа / П. П. Матус, В. Т. К. Туен, Ф. Ж. Гаспар // Докл. НАН Беларуси. – 2014. – Т. 58, № 5. – С. 18–22.

3. Matus, P. P. The maximum principle and same its applications / P. P. Matus // Comput. Meth. Appl. Math. – 2002. – Vol. 2, N 1. – Р. 50–91.

4. Mitidieri, E. Weakly Coupled Elliptic Systems and Positivity / Enzo Mitidieri, Guido Sweers // Mathematische Nachrichten. – 1995. – Vol. 173, Issue 1. – P. 259–286.

5. Гантмахер, Ф. Р. Теория матриц / Ф. Р. Гантмахер. – М.: Наука, 1967. – 576 с.


Review

Views: 1411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)