О РОСТЕ АНАЛИТИЧЕСКОЙ ФУНКЦИИ В КРУГЕ
Аннотация
В работе введен экспоненциальный порядок роста аналитической функции ϕ в круге и установлена связь между скоростью роста коэффициентов разложения функции и ее порядком. Дано приложение к описанию поведения нормы резольвенты R(B,λ) ограниченного линейного оператора при приближении λ к спектру.
Об авторах
А. Б. АНТОНЕВИЧБеларусь
АЛИ А. ШУКУР
Беларусь
Список литературы
1. Holland, A. S. B. Introduction to the theory of Entire functions / A. S. B. Holland. – New York; London: Academic press, 1973.
2. Маркушевич, А. И. Теория аналитических функций / А. И. Маркушевич. – Москва, 1950.
3. Евграфов, М. А. Асимптотические оценки и целые функции / М. А. Евграфов. – Москва, 1957.
4. Faber, G. Beitrag zur Theorie der ganzen funktionen / G. Faber // Math. Ann. – 1911. – Vol. 70. – P. 48–68.
5. Bieberbach, L. Analytische Fortsetzung / L. Bieberbach. – Springer Verlag, 1955.
6. Nagy, B. A resolvent condition implying power boundedness / B. Nagy, J. A. Zemanek // Studia Math. – 1999. – Vol. 134. – P. 143–151.
7. Nevanlinna, O. Resolvent conditions and powers of operators / O. Nevanlinna // Studia Math. – 2011. – Vol. 145. – P. 113–134.
8. Nevanlinna, O. On the growth of the resolvent operators for power bounded operators / O. Nevanlinna // Banach center publiction. – 1997. – Vol. 28. – P. 247–264.
9. Zabreko, P. P. Error estimates of successive approximations and spectral properties of linear operators / P. P. Zabreko // Numercal functional analysis and optimizаtion. – 1990. – Vol. 7–8. – P. 823–838.
10. Антоневич, А. Б. Оценка резольвент для дискретных взвешенного операторов / А. Б. Антоневич, Али А. Шукур // Проблемы физики, математики и техники. – 2015. – № 22. – С. 48–52.
11. Antonevich, A. B. Linear functional equation.operator approach / A. B. Antonevich. – Birkhauser, 1996.