Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

GROWTH OF THE ANALYTIC FUNCTION ON THE DISC

Abstract

In this article, the order of exponential of growth of analytical function ϕ on the disc is introduced, and the relation between the order of the function ϕ and its coefficients is obtained. An application of this result gives us the description of the behavior of the resolvent  R(B,λ)  of linear bounded operator where λ approaches the spectrum.

About the Authors

A. B. ANTONEVICH
Belarusian State University
Belarus


ALI A. SHUKUR
Belarusian State University
Belarus


References

1. Holland, A. S. B. Introduction to the theory of Entire functions / A. S. B. Holland. – New York; London: Academic press, 1973.

2. Маркушевич, А. И. Теория аналитических функций / А. И. Маркушевич. – Москва, 1950.

3. Евграфов, М. А. Асимптотические оценки и целые функции / М. А. Евграфов. – Москва, 1957.

4. Faber, G. Beitrag zur Theorie der ganzen funktionen / G. Faber // Math. Ann. – 1911. – Vol. 70. – P. 48–68.

5. Bieberbach, L. Analytische Fortsetzung / L. Bieberbach. – Springer Verlag, 1955.

6. Nagy, B. A resolvent condition implying power boundedness / B. Nagy, J. A. Zemanek // Studia Math. – 1999. – Vol. 134. – P. 143–151.

7. Nevanlinna, O. Resolvent conditions and powers of operators / O. Nevanlinna // Studia Math. – 2011. – Vol. 145. – P. 113–134.

8. Nevanlinna, O. On the growth of the resolvent operators for power bounded operators / O. Nevanlinna // Banach center publiction. – 1997. – Vol. 28. – P. 247–264.

9. Zabreko, P. P. Error estimates of successive approximations and spectral properties of linear operators / P. P. Zabreko // Numercal functional analysis and optimizаtion. – 1990. – Vol. 7–8. – P. 823–838.

10. Антоневич, А. Б. Оценка резольвент для дискретных взвешенного операторов / А. Б. Антоневич, Али А. Шукур // Проблемы физики, математики и техники. – 2015. – № 22. – С. 48–52.

11. Antonevich, A. B. Linear functional equation.operator approach / A. B. Antonevich. – Birkhauser, 1996.


Review

Views: 757


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)