INTERNAL ELECTRIC FIELD, ELECTRON-TRAPPING VOIDS, DEAD ELECTRONS, AND THE INCREASING OF THE EFFICIENCY OF POLYMER SOLAR CELLS WITH FLUORINATION
Abstract
We propose a model that allows an understanding of the nature of electron traps in π-onjugated polymers that are used in photovoltaic devices. It is assumed that the free-cavity voids in the polar π-conjugated polymer exhibit electron-accepting affinity and are filled with electrons, called erein as ‘dead’ electrons because they are hold by a static random internal electric field and are not driven to the cathode by external built-in voltage. As a result, the dead electrons into electron-trapping voids are unsuitable for use in the external circuit of organic solar cells. As justified here, the exciton dissociation on the surfaces of voids, the capture of drift electrons by voids, the emerging of the dead electrons and their non-geminate recombination are the main obstacles to create highly efficient polymer solar cells. The model of dead electrons allows explaining the increase in the power conversion efficiency of solar cells caused by the polymer fluorination, side-chain polymer manipulation, and dopant-controlled trap-filling. Some characteristics of hybrid P3HT:CdSe solar cells are also analyzed with the help of this model.
References
1. Heeger, A. J. 25th Anniversary Article: Bulk heterojunction solar cells: Understanding the mechanism of operation / A. J. Heeger // Advanced Materials. – 2014. – Vol. 26, N 1. – P. 10– 28; doi: 10.1002/adma.201304373.
2. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: A review / N. Leclerc [et al.] // Polymers. – 2016. – Vol. 8, N 1. – P. 11-1-27; doi:10.3390/polym8010011.
3. Efficient organic solar cells processed from hydrocarbon solvents / J. Zhao [et al.] // Nature Energy. – 2016. – Vol. 1, N 2. – P. 15027-1-7; doi: 10.1038/nenergy.2015.27.al.] // Angewandte Chemie International Edition. – 2011. – Vol. 50, N 13. – P. 2995–2998; doi: 10.1002/ange.201005451.
4. Semi-crystalline photovoltaic polymers with efficiency exceeding 9 % in a ∼300 nm thick conventional single-cell device / T. L. Nguyen [et al.] // Energy & Environmental Science. – 2014. – Vol. 7, N 6. – P. 3040–3051; doi: 10.1039/ C4EE01529K.
5. Mobility-controlled performance of thick solar cells based on fluorinated copolymers / W. Li [et al.] // Journal of the American Chemical Society. – 2014. – Vol. 136, N 44. – P. 15566– 5576; doi: 10.1021/ja5067724.
6. Nicolai, H. T. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution / H. T. Nicolai, M. M. Mandoc, P. W. M. Blom // Physical Review B. – 2011. – Vol. 83, N 19. – P. 1952041-1-5; doi: 10.1103/PhysRevB.83.195204.
7. Mobility relaxation and electron trapping in a donor/acceptor copolymer / M. Schubert [et al.] // Physical Review B. – 2013. – Vol. 87, N 2. – P. 024203-1-12; doi: 10.1103/PhysRevB.87.024203.
8. Pavlovich, V. S. Fluctuations of local electric field in polar media and a variance of frequency distribution of electronic transition of polar impurity molecules / V. S. Pavlovich // Doklady Akademii Nauk BSSR (Dokl. Akad. Nauk BSSR). – 1987. – Vol. 31, N 5. – P. 412–415 [in Russian].
9. Pavlovich, V. S. Solvatochromism and nonradiative decay of intramolecular charge- transfer excited states: bands-ofenergy model, thermodynamics, and self-organization / V. S. Pavlovich // European Journal of Chemical Physics and Physical Chemistry. – 2012. – Vol. 13, N 18. – P. 4081–4093; doi: 10.1002/cphc.201200426.
10. Pavlovich, V. S. Solvent polarity effect on excited-state lifetime of carotenoids and some dyes / V. S. Pavlovich // Biopolymers. – 2006. – Vol. 82, N 4. – P. 435–441; doi: 10.1002/bip.20464.
11. Pavlovich, V. S. Gas-phase energy of the S2←S0 transition and electrostatic properties of the S2 state of carotenoid peridinin via a solvatochromic shift and orientation broadening of the absorption spectrum / V. S. Pavlovich // Photochemical & Photobiological Sciences. – 2014. – Vol. 13, N 10. – P. 1444–1455; doi: 10.1039/C4PP00124A.
12. Field-dependent exciton dissociation in organic heterojunction solar cells / A. Petersen [et al.] // Physical Review B. – 2012. – Vol. 85, N 24. – P. 245208-1-10; doi: 10.1103/PhysRevB.85.245208.
13. Pavlovich, V. S. Photoprocesses in biomolecules, carbon nanoparticles and polymer solar cells / V. S. Pavlovich. – Minsk, 2016. – 318 p. [in Russian].
14. Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers / Y. Sun [et al.] // Journal of materials Chemistry. – 2012. – Vol. 22, N 12. – P. 5587–5595; doi: 10.1039/C2JM15517F.
15. High-dielectric constant side-chain polymers show reduced non-geminate recombination in heterojunction solar cells /
16. Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM / X. Guo [et al.] // RSC Advances. – 2016. – Vol. 6 (Issue in progress). – P. 51924–51931; doi: 10.1039/ C6RA06020J.
17. Trap-induced losses in hybrid photovoltaics / F. Gao [et al.] // ACS Nano. – 2014. – Vol. 8, N 4. – P. 3213–3221; doi: 10.1021/nn501185h.
18. Interplay of intramolecular noncovalent Coulomb interactions for semicrystalline photovoltaic polymers / M. A. Uddin [et al.] // Chemistry of Materials. – 2015. – Vol. 7, N 17. – P. 5997–6007; doi: 10.1021/acs.chemmater.5b02251.