Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

QUANTUM MECHANICS OF A SPIN 1 PARTICLE WITH THE ANOMALOUS MAGNETIC MOMENT IN THE MAGNETIC FIELD

Abstract

The generalized Duffin–Kemmer equation for a spin 1 particle with the anomalous magnetic moment in the external uniform magnetic field is investigated. The separation of variables in the wave equation is performed on the basis of projective operator techniques. The problem is reduced to a system of differential equations for three independent functions that have been solved in terms of the confluent hypergeometric functions. Three series of the energy levels are found. To assign them the physical sense at all values of the main quantum number n = 0,1, 2, , special restrictions on anomalous magnetic moment values must be imposed – they are formulated in explicit form. Otherwise, only some part of the energy levels corresponds to the bound states. The neutral spin 1 particle is considered as well. In this case, no bound states exist in the systems. The main qualitative manifestation of the anomalous magnetic moment is the space scaling of the arguments of the wave functions in comparison with a particle without such a moment.

About the Authors

V. V. KISEL
Belarusian State University of Informatics and Radioelectronics
Belarus


E. M. OVSIYUK
Mozyr State Pedagogical University named after I. P. Shamyakin
Belarus


O. V. VEKO
Gymnasium, Kalinkovichi
Belarus


Y. A. VOYNOVA
Secondary school, Kochischany, Yelsk region
Belarus


V. M. RED’KOV
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus


References

1. Petras, M. A note to Bhabha’s equation for a particle with maximum spin 3/2 / M. Petras // Czech. J. Phys. – 1955. – Vol. 5, N 3. – P. 418–419.

2. Кисель, В. В. Теория Петраша для частицы со спином 1/2 в искривленном пространстве– времени / В. В. Кисель, Н. Г. Токаревская, В. М. Редьков. – Препринт № 737 / Институт физики НАНБ. – Минск, 2002. – 25 с.

3. Теория Петраша для частицы со спином 1/2 в искривленном пространстве-времени / А. А. Богуш [и др.] // Весцi НАН Беларусі. Сер. фiз.-мат. навук. – 2002. – № 1. – С. 63–68.

4. Редьков, В. М. Поля частиц в римановом пространстве и группа Лоренца / В. М. Редьков. – Минск: Белорусская наука, 2009. – 496 с.

5. Shamaly, A. Unified theories for massive spin 1 fields / A. Shamaly, A. Z. Capry // Can. J. Phys. – 1973. – Vol. 51, N 14. – P. 1467–1470.

6. Кисель, В. В. Pелятивистские волновые уравнения с расширенным набором представлений: автореф. дис. … канд. физ.-мат. наук / В. В. Кисель. – Минск, 1984. – 11 с.

7. Квантовая механика электрона в магнитном поле, учет аномального магнитного момента / Е. М. Овсиюк [и др.] // Докл. НАН Беларуси. – 2016. – Т. 60, № 4. – С. 67–73.

8. Частица со спином 1/2 и аномальным моментом в однородном электрическом поле / Е. М. Овсиюк [и др.] // Весн. Брэсцкага ун-та. Сер. 4. Фiзiка, матэматыка. – 2016. – № 1. – С. 22–28.


Review

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)