Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

APPLICATION OF PLASMONIC LUMINESCENCE ENHANCEMENT FOR IMPROVEMENT OF LED SYSTEMS

Abstract

Multiple enhancement of electroluminescence efficacy and acceleration of modulation of LED light sources are shown to be possible using plasmonic effects. The model is used which accounts for an intrinsic quantum yield of a semiconductor, the modification of probabilities of radiative and non-radiative quantum transitions near metal nanoparticles, and the radiation scattering contribution to the modification of light-matter interactions near metal nanoparticles.

About the Authors

D. V. Guzatov
Ya. Kupala Grodno State University
Belarus
Ph. D. (Physics and Mathematics), Assistant Professor, doctoral student


S. V. Gaponenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus
Academician, D. Sc. (Physics and Mathematics), Chief researcher


References

1. Klimov V. V. Nanoplasmonics. Moscow, Fizmatlit Publ., 2009. 480 p. (in Russian)

2. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010. 465 p.

3. Guzatov D. V., Vaschenko S. V., Stankevich V. V., Lunevich A. Yu., Glukhov Yu. F., Gaponenko S. V. Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. Journal of Physical Chemistry C, 2012, vol. 116, no. 19, pp. 10723–10733. doi: 10.1021/jp301598w.

4. Fujiki A., Uemura T., Zettsu N., Akai-Kasaya M., Saito A., Kuwahara Y. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode. Applied Physics Letters, 2010, vol. 96, no. 4, pp. 043307-1–043307-3. doi:10.1063/1.3271773.

5. Cho C. Y., Lee S. J., Song J. H., Hong S. H., Lee S. M., Cho Y. H., Park S. J. Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Applied Physics Letters, 2011, vol. 98, no. 5, pp. 051106-1–051106-3. doi:10.1063/1.3552968.

6. Dimitrov S., Haas H. Principles of LED Light Communications: Towards Networked Li–Fi. Cambridge, Cambridge University Press, 2015. 207 p.

7. Gaponenko S. V., Guzatov D. V. Enhancement of molecular luminescnece near a metal spherical nanoparticle. Doklady Natsional’noi Akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2012. vol. 56, no. 3, pp. 57–62. (in Russian)

8. Klimov V. V., Letokhov V. S. Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Physics, 2005, vol. 15, no. 1, pp. 61–73.

9. Johnson P. B., Christy R. W. Optical constants of the noble metals. Physical Review B, 1972, vol. 6, no. 12, p. 4370–4379. doi:10.1103/physrevb.6.4370.

10. Lu G., Zhang T., Li W., Hiu L., Liu J., Gong Q. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. Journal of Physical Chemistry C, 2011, vol. 115, no. 32, pp. 15822–15832. doi: 10.1021/jp203317d.

11. Gandra N., Portz C., Tian L., Tang R., Xu R., Achilefu S., Singamaneni S. Probing distance dependent plasmon enhanced near infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angewandt Chemie International Edition, 2014, vol. 53, no. 3, pp. 866–870. doi: 10.1002/anie.201308516.


Review

Views: 922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)