TUNNELING THROUGH A SMOOTH PARABOLIC BARRIER OF FINITE HEIGHT
Abstract
About the Authors
V. V. KudryashovBelarus
Ph. D. (Physics and Mathematics), Deputy Head of the Laboratory
A. V. Baran
Belarus
Ph. D. (Physics and Mathematics), Researcher
References
1. Razavy M. Quantum Theory of Tunneling. Singapore, World Scientific, 2003. 549 p. doi: 10.1142/9789812564887.
2. Kemble E. C. A contribution to the theory of the B.W.K. method. Physical Review, 1935, vol. 48, no. 6, pp. 549–561. doi: 10.1103/physrev.48.549.
3. Biswas D., Kumar V. Improved transfer matrix methods for calculating quantum transmission-coefficient. Physical Review E, 2014, vol. 90, no. 1, pp. 013301(7). doi:10.1103/physreve.90.013301.
4. Bell R. D. Quantum mechanical effects in reactions involving hydrogen. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1935, vol. 148, no. 864, pp. 241–250.
5. Zhangs A., Cao Z., Shen Q., Dou X., Chen Y. Tunnelling coefficients across an arbitrary potential barrier. Journal of Physics A: Mathematical and General, 2000, vol. 33, no. 30, pp. 5449–5456. doi:10.1088/0305-4470/33/30/313.
6. Merzbacher E. Quantum Mechanics. New York, John Willey and Sons Inc., 1998. 621 p.
7. Jelic V., Marsiglio F. The double-well potential in quantum mechanics: a simple, numerically exact formulation. European Journal of Physics, 2012, vol. 33, no. 6, pp. 1651–1666. doi:10.1088/0143-0807/33/6/1651.
8. Abramovitz M., Stegun I. A. (eds). Handbook of Mathematical Functions. New York, Dover, 1970. 1060 p.